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Abstract

We are concerned with the numerical computation of electrostatic forces/torques in only
piecewise homogeneous materials using the boundary element method (BEM). Conventional
force formulas based on the Maxwell stress tensor yield functionals that fail to be continuous
on natural trace spaces. Thus their use in conjunction with BEM incurs slow convergence
and low accuracy. We employ the remedy discovered in [P. Panchal and R. Hiptmair,
Electrostatic Force Computation with Boundary Element Methods, The SMAI journal of
computational mathematics, 8 (2022), pp. 49–74]: Motivated by the virtual work principle
which is interpreted using techniques of shape calculus, and using the the adjoint method
from shape optimization, we derive stable interface-based force functionals suitable for use
with BEM. This is done in the framework of single-trace direct boundary integral equations
for second-order transmission problems. Numerical tests confirm the fast asymptotic con-
vergence and superior accuracy of the new formulas for the computation of total forces and
torques.

1 Introduction

1.1 Topic and Goals

When a body composed of several homogeneous dielectrics is exposed to an electric field, it will
experience forces, which are concentrated at the material interfaces. Since these forces induce
mechanical stress, they represent important quantities of interest in the numerical simulation of
electromagnetic phenomena.

The Maxwell stress tensor supplies the classical formulas for electromagnetic force densities
[14, Sec. 6.9],[7, Sec. 8.2]. For piecewise homogeneous media these formulas can even be reduced
to expressions entirely relying on restrictions of the fields to interfaces. However, these expressions
are affected by intrinsic instability, because they fail to provide functionals that are continuous
in energy trace spaces. As a consequence, when they are used with numerically computed
approximations of the fields, they offer only low accuracy, in particular when the fields feature
singularities. For volume-based discretization techniques like the finite element method (FEM) a
simple remedy is to avoid using interfaced-based formulas and employ equivalent volume-based
expressions instead. Those are perfectly stable and yield highly accurate forces, which even enjoy
“superconvergence” when used with the FEM.

The use of volume-based force formulas is not an option when using the boundary element
method (BEM) for the approximate computation of the electric field. Remember that that
method is based on reformulations of the electrostatic transmission problem as integral equations
posed in traces spaces on material interfaces. This means that the BEM directly approximates
traces or jumps of fields on interfaces and dispenses with meshing the volume. Thus, using
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stable volume-based force formulas is not feasible with reasonable effort. Can we avoid using the
unstable interface-based force formulas in the context of BEM?

In this article we demonstrate that the answer is yes. By harnessing the virtual work principle
we devise a stable way to compute forces directly from approximate solutions of boundary integral
equations. It is stable in the sense that the resulting force functionals are continuous on energy-
related trace spaces on interfaces. Thus, we can benefit from the extraordinary accuracy and fast
convergence offered by continuous output functionals in conjunction with Galerkin discretization
[17, Prop. 1.2]. The mathematical tools that paved the way for the new better force formulas
are shape calculus, transformation techniques using suitable pullbacks of traces, and the adjoint
method borrowed from constrained optimization.

1.2 Electrostatic Transmission Model Problem

To keep the presentation focused we confine ourselves to the following setting: We consider
a parallel-plate capacitor where the gap between the plates is filled with two homogeneous,
isotropic, and linear dielectric materials. The gap between the plates, containing both dielectrics,
is denoted by the simply connected, open Lipschitz domain Ω ⊂ R

d, d = 2, 3. The dielectric
materials are referred to by an index i ∈ {1, 2} and the corresponding dielectric tensors are given
as εεεi = εi Id, where εi ∈ R

+ is a constant and Id is the d × d identity matrix. Dielectric 1
occupies the open, connected, Lipschitz domain Ω1 ⊂ Ω whereas dielectric 2 occupies the open,
Lipschitz domain Ω2 ⊂ Ω such that Ω1 ∪Ω2 = Ω and Ω1 ∩Ω2 = ∂Ω1. In other words, Dielectric
1 is embedded inside Dielectric 2 as shown in Figure 1. Under operation of the capacitor, there
is an imposed potential difference between the plates, giving rise to an electric field in Ω which
stores energy.

We use the notation ΓI := ∂Ω1 for the interface between two dielectrics, ΓD ⊂ ∂Ω for the
edges of Dielectric 2 touching the capacitor plates where the external voltage is applied and
ΓN := ∂Ω\ΓD for the free boundary of capacitor, as shown in Figure 1. In the sequel we admit a

more general Dirichlet boundary condition g ∈ H
1

2 (ΓD). On the boundary ΓN a zero Neumann
boundary condition is a sensible choice to model the ideal case where the electric field lines stay
inside the dielectric and there is no fringing around the edges [7, Section 4.4]. Also here we may

impose a more general Neumann boundary condition through a function η ∈ H− 1

2 (ΓN ).
Writing n2 for the exterior unit normal vector field on ∂Ω2, the electrostatic scalar potential

u : Ω → R can be obtained as the weak solution in H1(Ω)1 of the linear elliptic mixed boundary
value problem

∇ · (εεε∇u) = 0 in Ω, u = g on ΓD, ∇u · n2 = η on ΓN , (1)

where εεε(x) = εεεi, for x ∈ Ωi, i = 1, 2. Due to the presence of two different media in our domain,
the problem (1) can be reformulated as a transmission problem. Using the notation ui for the
potential solution inside Ωi and n1 for the exterior unit normal field for ∂Ω1, we get two Laplace
problems

∆u1 = 0 in Ω1, (2)

and
∆u2 = 0 in Ω2, u2 = g on ΓD, ∇u2 · n2 = η on ΓN . (3)

The potential solutions in the two domains are connected via two transmission conditions
[18, Sec. 1.1] at the interface ΓI which are given as

u1|ΓI
= u2|ΓI

, ε1 ∇u1 · n1|ΓI
= −ε2 ∇u2 · n2|ΓI

. (4)

1We adopt the convention of [18, Sec. 2.3 & Sec. 2.4] for function spaces and Sobolev spaces:

Wk,p(Ω), H1(Ω), H
1

2 (Ω), L2(Ω), Ck(Ω) etc., where Ω denotes a generic domain.
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Figure 1: Geometric setting for model problem

1.3 Novelty and Outline

This article is intended as a supplement and extension for our foundational work [17], where the
main ideas and arguments have been elaborated for the case of electromagnetic forces on perfectly
conducting bodies, which gives rise to Dirichlet boundary value problems. The transmission
problems treated in the present work involve both Dirichlet and Neumann traces and significantly
more complex boundary integral equations comprising all four fundamental boundary integral
operators (BIOs), not just the simple single-layer BIO faced in [17]. Thus, this work entails more
careful considerations as regards suitable pullbacks and some technical innovations, in particular
concerning the hyper-singular BIO.

In the next section we give details about the boundary-element discretization of the trans-
mission problem (1). We rely on the so-called direct single-trace boundary integral formulation
(STF) [3], which features both Neumann and Dirichlet traces of the potential u as unknowns.
The BEM produces piecewise polynomial approximations of those two traces, which, in prin-
ciple, can be plugged into the conventional interface-based force formula, see Section 2.3, with
disappointing results, however, as we will demonstrate in Section 4.

Section 3 is the core of the paper. Along the lines of [17, Sects. 3 & 4] we derive the new stable
interface-based force formula (27) from the boundary integral equations in variational form. We
emphasize that this rather involved derivation is the main focus of the present article. For the
sake of brevity we will not dwell long on the continuity properties of the obtained functionals,
but merely sketch the arguments in Section 3.6. For a more profound exposition refer to [17,
Sect. 4].

In the final Section 4 we put the new formulas to test in a number of numerical experiments
in two dimensions. For smooth and non-smooth interfaces we study the discretization error for
total forces and torques. Without exaggeration, for all test cases our new force formulas perform
vastly better than the classical interface-based expressions. They provide superior accuracy and
enhanced rates of convergence under mesh refinement, clearly on par with what we get from
volume-based formulas in the FEM.
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2 Boundary Element Method

Now we introduce the relevant boundary integral equations. Since we have two Laplace problems
on domains Ω1 and Ω2, we review the fundamental boundary integral equations for the Laplace
operator.

2.1 Boundary Integral Equations (BIEs)

For a bounded open Lipschitz domain Θ ⊂ R
d, a function u ∈ H1(Θ) weakly satisfying the

Laplace equation ∆u = 0 in Θ also satisfies the following equations:

[

−V Id
2 +K

Id
2 −K′ −W

] [

TN u

TD u

]

=

[

0
0

]

. (5)

In the equations above TN : H1(Θ) → H− 1

2 (∂Θ) is the interior Neumann Trace operator and

TD : H1(Θ) → H
1

2 (∂Θ) is the interior Dirichlet Trace operator defined for smooth functions as:

TN u(x∗) := lim
x∈Θ→x∗∈∂Θ

∇u(x) · n(x∗), TD u(x
∗) := lim

x∈Θ→x∗∈∂Θ
u(x), (6)

where n is the unit exterior normal vector field on ∂Θ. The operators V, K, K′ and W are the
well known Single layer, Double layer, Adjoint double layer and Hypersingular boundary integral
operators (BIOs) from BEM theory, for which we refer to the textbooks [20, Ch. 6] [18, Ch.

3] where definitions of the Sobolev spaces H1(Θ), H− 1

2 (∂Θ) and its dual H
1

2 (∂Θ) can also be
found. These BIOs are bounded linear operators acting between the following spaces:

V : H− 1

2 (∂Θ) → H
1

2 (∂Θ), K : H
1

2 (∂Θ) → H
1

2 (∂Θ),

K′ : H− 1

2 (∂Θ) → H− 1

2 (∂Θ), W : H
1

2 (∂Θ) → H− 1

2 (∂Θ).

2.2 Variational Boundary Integral Equations

We have two sets of boundary integral equations on two dielectric domains Ωi, i = 1, 2. Com-
bining them with the transmission conditions, we obtain well posed boundary integral equations
(BIEs). The two sets of BIEs can be compactly written as

[

−Vi
Id
2 +Ki

Id
2 −K′

i −Wi

] [

Ti
N ui

Ti
D ui

]

=

[

0
0

]

, (7)

where the subscript i in the BIOs denote that they are defined on the boundary ∂Ωi and the
corresponding trace operators are denoted by the superscript i, defined by replacing Θ → Ωi and
∂Θ → ∂Ωi in (6).

To obtain a variational formulation, we first rely on the offset function technique used for
mixed boundary value problem [20, Ch. 7][18, Ch. 4]. Let g′ ∈ H

1

2 (∂Ω) and η′ ∈ H− 1

2 (∂Ω) be
suitable extensions of the given boundary traces g and η respectively such that g′|ΓD

= g and
η′|ΓN

= η. Using these extensions, we can write the traces2 on ∂Ω as:

T2
D u2

∣

∣

∂Ω
:= g

′ + u, u ∈ H̃
1

2 (ΓN ) := {v ∈ H
1

2 (∂Ω) : supp(v) ⊂ ΓN},

T2
N u2

∣

∣

∂Ω
:= η′ + ψ, ψ ∈ H̃− 1

2 (ΓD) := {φ ∈ H− 1

2 (∂Ω) : supp(v) ⊂ ΓD}.
(8)

2For functions in H
1

2 we use Roman letters and for those in H−

1

2 we use Greek letters
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Traces on ΓI are denoted as uI := T2
D u2

∣

∣

ΓI

and ψI := T2
N u2

∣

∣

ΓI

, where uI ∈ H
1

2 (ΓI) and ψI ∈

H− 1

2 (ΓI). The task of solving the transmission problem (3) then becomes finding the unknown

traces u ∈ H̃
1

2 (ΓN ), ψ ∈ H̃− 1

2 (ΓD), uI ∈ H
1

2 (ΓI) and ψI ∈ H− 1

2 (ΓI). More information on the
”tilde spaces” can be found in literature [18, Sec. 2.4.2],[20, Sec. 2.5].

To get the variational equations we rely on the duality of the Sobolev spaces H− 1

2 and H
1

2 .
Multiplying the first equation in (7) for Ω2 with some φ ∈ H− 1

2 (∂Ω2) and integrating, we get

aV2
(T2

N u2, φ) =
1

2

〈

T2
D u2, φ

〉

L2(∂Ω2)
+ aK2

(T2
D u2, φ) ∀φ ∈ H− 1

2 (∂Ω2), (9)

where 〈·, ·〉L2(∂Ω2)
is the L2 duality pairing and the bilinear forms are defined as:

aVi
:











H− 1

2 (∂Ωi)×H− 1

2 (∂Ωi) → R

aVi
(ψ, φ) := 〈Vi ψ, φ〉L2(∂Ωi)

=

∫

∂Ωi

∫

∂Ωi

G∆(x,y) ψ(y) φ(x) dS(y)dS(x),

aKi
:











H
1

2 (∂Ωi)×H− 1

2 (∂Ωi) → R

aKi
(g, φ) := 〈Ki g, φ〉L2(∂Ωi)

=

∫

∂Ωi

∫

∂Ωi

∇yG
∆(x,y) · ni(y) g(y) φ(x)dS(y)dS(x),

i ∈ {1, 2}, where G∆(x,y) : {(x,y) ∈ R
d ×R

d : x 6= y} → R is the fundamental solution for the
Laplace operator

G∆(x,y) := −
1

2π
log(‖x− y‖) for d = 2, G∆(x,y) :=

1

4π ‖x− y‖
for d = 3.

Let the chosen test function φ in (9) be such that φ|ΓI
≡ 0, and φ|∂Ω = φ̃ ∈ H̃− 1

2 (ΓD). The
integrals over ∂Ω2 can be decomposed into integrals over the disjoint boundaries ΓI and ∂Ω and
we get

∫

∂Ω

∫

ΓI

G∆(x,y) ψI(y) φ̃(x) dS(y)dS(x) +

∫

∂Ω

∫

∂Ω

G∆(x,y) (η′(y) + ψ(y)) φ̃(x) dS(y)dS(x)

=
1

2

∫

∂Ω

g
′(x) φ̃(x) dS(x) +

∫

∂Ω

∫

ΓI

∇yG
∆(x,y) · n2(y) uI(y) φ̃(x) dS(y)dS(x)

+

∫

∂Ω

∫

∂Ω

∇yG
∆(x,y) · n2(y) (u(y) + g

′(y)) φ̃(x) dS(y)dS(x). ∀φ̃ ∈ H̃− 1

2 (ΓD) (10)

By introducing abbreviations for the double integrals that we encounter, the variational equations
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can be written in a compact way

a•,NV :











H− 1

2 (Γ•)×H− 1

2 (ΓN) → R

(ψ, φ) 7→

∫

ΓN

∫

Γ•

G∆(x,y) ψ(y) φ(x) dS(y)dS(x).

l• :











H
1

2 (Γ•)×H− 1

2 (Γ•) → R

(g, φ) 7→

∫

Γ•

g(x) φ(x) dS(x)

a•,NK :











H
1

2 (Γ•)×H
1

2 (ΓN) → R

(g, φ) 7→

∫

ΓN

∫

Γ•

∇yG
∆(x,y) · n2(y) g(y) φ(x) dS(y)dS(x)

a•,NW :































H
1

2 (Γ•)×H
1

2 (ΓN) → R

(g, v) 7→

∫

ΓN

∫

Γ•

G∆(x,y)
d

dt
g(y)

d

dt
v(x) dS(y)dS(x) (2D)

(g, v) 7→

∫

ΓN

∫

Γ•

G∆(x,y) curlΓ g(y) · curlΓ v(x) dS(y)dS(x) (3D).

where •,N ∈ {I,G}, ΓG := ∂Ω and curlΓ u(x) := gradΓ u(x) × n2(x), where gradΓ is the
surface gradient operator. This notation allows us to rewrite (10) as

aI,GV (ψI , φ̃) + aG,G
V (ψ, φ̃)− aI,GK (uI , φ̃)− aG,G

K (u, φ̃)

=
1

2
lG(g′, φ̃)− aG,G

V (η′, φ̃) + aG,G
K (g′, φ̃) ∀φ̃ ∈ H̃− 1

2 (ΓD).

Similarly testing the second equation in (7) for Ω2 with a function v ∈ H
1

2 (∂Ω2) with v|∂Ω =

ṽ ∈ H̃
1

2 (ΓN ) and v|ΓI
≡ 0 we get the variational equation

aI,GW (uI , ṽ) + aG,G
W (u, ṽ) + aG,G

K (ṽ, ψ) + aG,I
K (ṽ, ψI)

=
1

2
lG(ṽ, η′)− aG,G

W (g′, ṽ)− aG,G
K (ṽ, η′) ∀ṽ ∈ H̃

1

2 (ΓN ).

Note that we write the bilinear form corresponding to K′ in terms of a•,NK as K′ is the adjoint
of the BIO K. Next we obtain equations for ΓI . We test the first equation in (7) for Ω1 with

φI ∈ H− 1

2 (ΓI):

aV1
(T1

N u1, φI) =
1

2

〈

T1
D u1, φI

〉

L2(ΓI)
+ aK1

(T1
D u1, φI) ∀φI ∈ H− 1

2 (ΓI). (11)

From the transmission conditions (4) we know that ε1 T
1
N u1 + ε2 T

2
N u2 = 0 on ΓI , which gives

T1
N u1 = − ε2

ε1
ψI , and that T1

D u1 = uI . Using these relations we get

−
ε2

ε1

∫

ΓI

∫

ΓI

G∆(x,y) ψI(y) φI(x) dS(y)dS(x) =
1

2

∫

ΓI

uI(x) φI(x) dS(x)

+

∫

ΓI

∫

ΓI

∇G∆(x,y) · n1(y) uI(y) φI(x) dS(y)dS(x) ∀φI ∈ H− 1

2 (ΓI). (12)
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These equations on ΓI are not very useful by themselves, as we do not know any traces on ΓI . We
combine these equations with corresponding equations for Ω2. For the first one we test the first
equation (7) for Ω2 with a function φ ∈ H− 1

2 (∂Ω2) such that φ|∂Ω ≡ 0 and φ|ΓI
= φI ∈ H− 1

2 (ΓI).
Then combining it with (12) we get

aG,I
V (ψ, φI) + (1 +

ε2

ε1
)aI,IV (ψI , φI)− aG,I

K (u, φI)− 2aI,IK (uI , φI) =

− aG,I
V (η′, φI) + aG,I

K (g′, φI) ∀φI ∈ H− 1

2 (ΓI).

We use a similar procedure to obtain the second equation

aG,I
W (u, vI) + (1 +

ε1

ε2
)aI,IW(uI , vI) + aI,GK (vI , ψ) + 2aI,IK (vI , ψI) =

− aG,I
W (g′, vI)− aI,GK (vI , η

′) ∀vI ∈ H
1

2 (ΓI).

In the combined system of equations we seek u ∈ H̃
1

2 (ΓN ), ψ ∈ H̃− 1

2 (ΓD), uI ∈ H
1

2 (ΓI) and

ψI ∈ H− 1

2 (ΓI) such that

aG,I
W (u, vI) + (1 +

ε1

ε2
)aI,IW(uI , vI) + aI,GK (vI , ψ) + 2aI,IK (vI , ψI)

= −aG,I
W (g′, vI)− aI,GK (vI , η

′) ∀vI ∈ H
1

2 (ΓI),

aG,I
V (ψ, φI) + (1 +

ε2

ε1
)aI,IV (ψI , φI)− aG,I

K (u, φI)− 2aI,IK (uI , φI)

= −aG,I
V (η′, φI) + aG,I

K (g′, φI) ∀φI ∈ H− 1

2 (ΓI),

aI,GV (ψI , φ̃) + aG,G
V (ψ, φ̃)− aI,GK (uI , φ̃)− aG,G

K (u, φ̃)

=
1

2
lG(g′, φ̃)− aG,G

V (η′, φ̃) + aG,G
K (g′, φ̃) ∀φ̃ ∈ H̃− 1

2 (ΓD),

aI,GW (uI , ṽ) + aG,G
W (u, ṽ) + aG,G

K (ṽ, ψ) + aG,I
K (ṽ, ψI)

=
1

2
lG(ṽ, η′)− aG,G

W (g′, ṽ)− aG,G
K (ṽ, η′) ∀ṽ ∈ H̃

1

2 (ΓN ).

(13)

Remark 1. From our knowledge of the mapping properties of the layer potentials and boundary
integral operators [18, Sec. 3.1.2] we know that all the bilinear forms on the LHS of (13) are
bounded. Combining all the bilinear forms on the LHS and setting (ṽ, φ̃, vI , φI) = (u, ψ, uI , ψI)
we get the ellipticity estimate

(1 +
ε1

ε2
)aI,IW(uI , uI) + (1 +

ε2

ε1
)aI,IV (ψI , ψI) + aG,G

V (ψ, ψ) + aG,G
W (u, u) + 2aI,GV (ψI , ψ) + 2aI,GW (uI , u)

≥ aI,IV (ψI , ψI) + aG,G
V (ψ, ψ) + 2aI,GV (ψI , ψ)+aG,G

W (u, u) + 2aI,GW (uI , u) + aI,IW(uI , uI)

= aV2
(ψ′, ψ′) + aW2

(u′, u′)

≥ c
(

‖ψ‖2
H̃

−
1

2 (ΓD)
+ ‖ψI‖

2

H
−

1

2 (ΓI)
+ ‖uI‖

2

H
1

2 (ΓI)
+ ‖u‖2

H̃
1

2 (ΓN )

)

,

where ψ′ ∈ H− 1

2 (∂Ω2) : ψ
′|ΓI

= ψI , ψ
′|∂Ω = ψ and u′ ∈ H

1

2 (∂Ω2) : u
′|ΓI

= uI , u
′|∂Ω = u. For

ellipticity results on the bilinear forms aV and aW we refer to [18, Sec. 3.5.2]. The existence of
a unique solution for (13) is then guaranteed by the Lax-Milgram lemma [18, Lem. 2.1.51].
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2.3 Boundary-Element Galerkin Discretization

We start with mesh partitions Mh and Nh of the boundaries ∂Ω and ΓI respectively, whose
cells consist of either curved segments d = 2 or curved triangular panels d = 3. We perform a
Galerkin discretization of (13) employing the lowest order boundary element spaces S−1

0 (Mh)

and S−1
0 (Nh) to approximate H− 1

2 (∂Ω) and H− 1

2 (ΓI) respectively, and S
0
1(Mh) and S

0
1(Nh) to

approximate H
1

2 (∂Ω) and H
1

2 (ΓI) respectively. For notations and details about the construction
of the spaces S−1

q and S0
q we refer to [20, Ch. 10] or [18, Ch. 4]. The choice of basis functions

and the computation of the Galerkin matrices is presented in [18, Ch. 5].

2.4 Using Interface-Based Force Formulas with BEM

Classical methods for computing electrostatic forces rely on the Maxwell stress tensor3[7, Sec-
tion 8.2, Eq. 8.17]. For a linear, homogeneous, and isotropic dielectric medium with permittivity
ε and a static electric field, the Maxwell stress tensor is defined as

T(u)(x) := ε

(

∇u(x)∇u(x)⊤ −
1

2
‖∇u(x)‖2Id

)

, x ∈ Ω, (14)

where u(x) is the electrostatic potential inside Ω. At a material interface Γ, the Maxwell stress
tensor is generally discontinuous and the surface force density fΓ is defined as [T(u)]n1 [11]
where [T(u)] is the jump of the Maxwell stress tensor across the interface ΓI , defined as outside
minus inside and n1 is the exterior unit normal vector field on Γ. For Dielectric 1 in our model
problem, there are no residual charges inside the body Ω1, hence it experiences only surface
forces. The net force F on ΓI can be obtained by integrating the surface force density

F :=

∫

ΓI

fΓ(x) dS(x) =

∫

ΓI

(T(u2)(x)−T(u1)(x))n1(x) dS(x). (15)

Note that the above expression for net force is an interface-based expression as it only involves
integration on the boundary ΓI .

The computed Galerkin solutions uhI , ψ
h
I , u

h and ψh can be plugged into the interface-based
formula (15) to get an approximation of the net force. To use the computed traces directly, we
use a simplified version of the boundary formula for d = 2, which can be obtained by using the
transmission conditions:

F =
ε1 − ε2

2

∫

ΓI

(

(

duI

dt
(x)

)2

+
ε2

ε1
ψ2
I (x)

)

n1(x) dS(x), (16)

where duI

dt
represents the arclength derivative of uI . The approximate force Fh

BEM is then given
as

Fh
BEM =

ε1 − ε2

2

∫

ΓI

(

(

duhI
dt

(x)

)2

+
ε2

ε1
(ψh

I (x))
2

)

n1(x) dS(x) (17)

Note that the expression is not well defined on H
1

2 (ΓI) ×H− 1

2 (ΓI), which reflects its inherent
instability pointed out in the Introduction.

3
Id stands for the d× d identity matrix, ‖.‖ denotes the Euclidean norm

8



3 Forces via Shape Differentiation

3.1 Virtual Work Principle

The Virtual Work Principle [11, 4, 2, 12, 1] tells us that the force can be recovered via the shape
derivative of the total energy. We will first introduce tools from Shape Calculus to give a precise
meaning to differentiating with respect to a shape and then apply them to our electrostatic
setting introduced in Section 1.2.

We start with a nonempty subset D ⊂ R
d which will be the hold-all domain. We denote by

P (D) the set of all subsets of D. Let A ⊂ P (D) be a family of admissible domains. A shape
functional is then a map J : A → R, Ω ∈ A 7→ J(Ω). To differentiate the shape functional J(Ω)
with respect to Ω, we use the perturbation method from literature [19, Sect. 2.8]. Starting from
a perturbation field ννν ∈ C∞

0 (D;Rd), compactly supported in the hold-all domain D we define
the perturbation map

Ts
ννν : D → R

d, Ts
ννν(x) := x+ s ννν(x), s ∈ R. (18)

The implicit function theorem ensures that there is a δ = δ(ννν) such that Ts
ννν is a C∞ diffeomor-

phism, if |s| < δ(ννν). The shape derivative is defined as the limit

dJ

dΩ
(Θ;ννν) := lim

s→0

J(Ts
ννν(Θ))− J(Θ)

s
,

if it exists. It is called the shape (Gateaux) derivative of J at Θ ∈ A in the direction ννν. If, in
addition, ννν → dJ

dΩ (Θ;ννν) ∈ R is a distribution on the space of test velocity fields C∞
0 (D;Rd), a

1-current as called by de Rham [5, Ch. 3, § 8] then Ω 7→ J(Ω) is called shape-differentiable at Θ
and that distribution is the shape derivative.

Remark 2. The Hadamard structure theorem [6, Ch. 9, Thm 3.6] states that for domains Θ
with C∞ boundary, the shape derivative ννν 7→ dJ

dΩ (Θ;ννν) admits a representative f in the space of
distributions on C∞(∂Θ)

dJ

dΩ
(Θ;ννν) = 〈f,ννν · n|∂Θ〉 , ννν ∈ C∞

0 (D;Rd).

The distribution can be regarded as representing a normal surface force density.

3.2 BIEs on Perturbed Interface

The perturbation map (18) gives a set of admissible domains Aννν , which is constructed using
perturbations of a reference domain Ω0 ⊂ D, that is Aννν := {Ωs := Ts

ννν(Ω0), s ∈ (−δ(ννν), δ(ννν))}.
In spirit of the Virtual Work Principle, we consider our electrostatic setting from Section 1.2 on
this set of admissible domains. Note that the chosen velocity field ννν is compactly supported on
the hold-all domainD and not the capacitor boundary ∂Ω0. For computing forces on the interface
Γ0
I we need ννν it to be compactly supported on Ω0 but we admit a more general perturbation

field at this point and will only make the simplification later on.
For the ”s” configuration, all the boundaries and interfaces relevant to the weak BIE formu-

lation in Section 2 are defined using the perturbation map, the dielectric constant εs(x) := εi for

x ∈ Ωs
i , and the boundary conditions are denoted by g′s ∈ H

1

2 (∂Ωs) and η′s ∈ H− 1

2 (∂Ωs). We
define the total energy functional J (s) as the sum of battery’s energy JB(s) and the electric field

9



energy JF (s), where J ,JB ,JF : (−δ(ννν), δ(ννν)) → R and the field energy functional is defined as

JF (s) :=
1

2

∫

Ωs

εs(x)∇us(x) · ∇us(x) dS(x)

=
ε1

2

∫

Ωs

1

||∇us1(x)||
2 dS(x) +

ε2

2

∫

Ωs

2

||∇us2(x)||
2 dS(x)

=
ε2

2

∫

∂Ωs

(us(x) + g
′
s(x)) (η

′
s(x) + ψs(x)) dS(x) =: J(s; us, ψs),

(19)

where the functions with ”s” sub/super-scripts are the solutions in the ”s” configuration.

Remark 3. The shape derivative of battery’s energy dJB

ds
(0) = −2dJF

ds
(0) since it is given as

U dQ
ds

(0), where Q(s) is the net charge on the outer boundary ∂Ωs and U is the constant voltage
drop [17, Rem. 3.1]. Hence we only need to examine the shape derivative of the field energy
which gives the negative force field.

Since the perturbation map is a C∞ diffeomorphism for small enough s, the domains in Aννν

will possess connected, Lipschitz boundaries. We use the same formulation from (13) and replace
Ω by Ωs. To account for this additional s dependence that now shows up through Ωs, we augment
our notation for (bi)linear forms:

a•,NV (s) :











H− 1

2 (Ts
ννν(Γ

0
•))×H− 1

2 (Ts
ννν(Γ

0
N
)) → R

a•,NV (s;ψ, φ) :=

∫

Ts
ννν
(Γ0

N
)

∫

Ts
ννν
(Γ0

•
)

G∆(x,y) ψ(y) φ(x) dS(y)dS(x)

a•,NK (s) :











H
1

2 (Ts
ννν(Γ

0
•))×H− 1

2 (Ts
ννν(Γ

0
N
)) → R

a•,NK (s; g, φ) :=

∫

Ts
ννν
(Γ0

N
)

∫

Ts
ννν
(Γ0

•
)

∇yG
∆(x,y) · ns

2(y) g(y) φ(x) dS(y)dS(x)

l•(s) :











H
1

2 (Ts
ννν(Γ

0
•))×H− 1

2 (Ts
ννν(Γ

0
•)) → R

l•(g, φ) :=

∫

Ts
ννν
(Γ0

•
)

g(x) φ(x) dS(x)

a•,NW (s) :



































H
1

2 (Ts
ννν(Γ

0
•)) × H

1

2 (Ts
ννν(Γ

0
N
)) → R

a•,NW (s; g, v) :=

∫

Ts
ννν
(Γ0

N
)

∫

Ts
ννν
(Γ0

•
)

G∆(x,y)
d

dt
g(y)

d

dt
v(x) dS(y)dS(x) (2D)

a•,NW (s; g, v) :=

∫

Ts
ννν
(Γ0

N
)

∫

Ts
ννν
(Γ0

•
)

G∆(x,y) curlΓ g(y) · curlΓ v(x) dS(y)dS(x) (3D)

where •,N ∈ {I,G}, Γ0
G = ∂Ω0 and Γ0

I is the reference interface. Note that in the new s-
dependent expressions d

dt
g and n

s
2 denote the arclength derivative and the unit normal vector

field on the perturbed boundaries Γs
• := Ts

ννν(Γ
0
•). This notation allows us to write the s dependent

model problem in a similar compact way. We seek us ∈ H̃
1

2 (Γs
N ), ψs ∈ H̃− 1

2 (Γs
D), usI ∈ H

1

2 (Γs
I)

and ψs
I ∈ H− 1

2 (Γs
I) such that

aG,I
W (s; us, vI) + (1 +

ε1

ε2
)aI,IW(s; usI , vI) + aI,GK (s; vI , ψs) + 2aI,IK (s; vI , ψ

s
I)
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= −aG,I
W (s; g′s, vI)− aI,GK (s; vI , η

′
s) ∀vI ∈ H

1

2 (Γs
I),

aG,I
V (s;ψs, φI) + (1 +

ε2

ε1
)aI,IV (s;ψs

I , φI)− aG,I
K (s; us, φI)− 2aI,IK (s; usI , φI)

= −aG,I
V (s; η′s, φI) + aG,I

K (s; g′s, φI) ∀φI ∈ H− 1

2 (Γs
I),

aI,GV (s;ψs
I , φ) + aG,G

V (s;ψs, φ)− aI,GK (s; usI , φ)− aG,G
K (s; us, φ)

=
1

2
lG(s; g′s, φ)− aG,G

V (s; η′s, φ) + aG,G
K (s; g′s, φ) ∀φ ∈ H̃− 1

2 (Γs
D),

aI,GK (s; usI , v) + aG,G
K (s; us, v) + aG,G

K (s; v, ψs) + aG,I
K (v, ψs

I)

=
1

2
lG(s; v, η′s)− aG,G

K (s; g′s, v)− aG,G
K (s; v, η′s) ∀v ∈ H̃

1

2 (Γs
N ).

(20)

A possible way to choose these boundary conditions is by taking the trace of functions in volume,
for example g′s := f |∂Ωs

∈ H
1

2 (∂Ωs) for some f ∈ H1(R2).

3.3 Transformation To Reference Domain

We begin by transforming the integrals back to the reference domain using the perturbation
map. The objective is to write an equivalent problem to (20) on the reference configuration.

a•,NV (s;ψ, φ) =

∫

Γ0
N

∫

Γ0
•

G∆(Ts
ννν(x),T

s
ννν(y)) ψ(T

s
ννν(y)) ωs(y) φ(T

s
ννν(x)) ωs(x) dS(y)dS(x),

a•,NK (s; g, φ) =

∫

Γ0
N

∫

Γ0
•

∇yG
∆(Ts

ννν(x),T
s
ννν(y)) · C(DTs

ννν(y))n
0
2(y) g(T

s
ννν(y))·

φ(Ts
ννν(x)) ωs(x) dS(y)dS(x),

l•(s; g, φ) =

∫

Γ0
•

g(Ts
ννν(x)) φ(T

s
ννν(x)) ωs(x) dS(x),

a•,NW (s; g, v) =







































∫

Γ0
N

∫

Γ0
•

G∆(Ts
ννν(x),T

s
ννν(y))

d

dt
g(Ts

ννν(y))
d

dt
v(Ts

ννν(x))·

ωs(y) ωs(x) dS(y)dS(x), (2D)
∫

Γ0
N

∫

Γ0
•

G∆(Ts
ννν(x),T

s
ννν(y)) curlΓ g(T

s
ννν(y)) · curlΓ v(T

s
ννν(x))·

ωs(y) ωs(x) dS(y)dS(x), (3D)

(21)

where n
0
2 is the unit normal vector field on the reference boundary and C(M) is the cofactor

matrix of M . We have used the following identity for transformation of surface integrals [6, Ch.
9, Sec. 4.2, eq. 4.9], [19, Sect. 2.17] from Ts

ννν(Γ) to Γ:
∫

Ts
ννν
(Γ)

f(x′) dS(x′) =

∫

Γ

(f ◦ Ts
ννν)(x) ωs(x) dS(x), ωs(x) :=

∥

∥C(DTs
ννν)(x) n

0(x)
∥

∥ , x ∈ Γ,

and the identity for transformation of unit normal vector fields [6, Ch. 9, Thm. 4.4 ]

n
s(Ts

ννν(x)) =
C(DTs

ννν(x))n
0(x)

‖C(DTs
ννν(x))n

0(x)‖
, x ∈ Γ,
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3.4 Pullback Approach

The next step to achieve our objective of having an equivalent problem on the reference domain
is the use of a pullback. Pullback allows us to get rid of the s-dependence of the function
spaces. We use a pullback of surface charge densities for functions in H− 1

2 (∂Ωs) and a pullback

of potentials for functions in H
1

2 (∂Ωs):

ψ̂ ∈ H− 1

2 (∂Ω0) : ψ̂ := (ψ ◦ Ts
ννν) ωs, ψ ∈ H− 1

2 (∂Ωs), (22)

v̂ ∈ H
1

2 (∂Ω0) : v̂ := v ◦ Ts
ννν , v ∈ H

1

2 (∂Ωs). (23)

The pullback allows us to work with functions on the reference boundary which will be important
in order to compute the energy shape derivative later. Since Ts

ννν is a Lipschitz continuous mapping
and ωs ∈ L∞(∂Ωs), the trace spaces are preserved under pullback. We also need additional
transformation rules for the hypersingular bilinear form a•,NW (s; g, v).

In 2D it involves the arclength derivative which transforms as

d

dt
g(Ts

ννν(x)) = lim
||y−x||→0

g(Ts
ννν(x))− g(Ts

ννν(y))

||Ts
ννν(x)− Ts

ννν(y)||
= lim

||y−x||→0

g ◦ Ts
ννν(x)− g ◦ Ts

ννν(y)

ωs(x)||y − x||
=

1

ωs(x)

dĝ

dt̂
(x),

where dĝ

dt̂
is the arclength derivative on the reference boundary.

In 3D we have the surface curl operator. We begin by noting that curlΓ u(x) := gradΓ u(x)×
n(x) = ∇ũ(x)×n(x), where ũ : R3 → R is an extension of u ∈ C1(Γ) to a neighborhood of the
surface Γ with an outward normal n(x). Using the transformation rules for the gradient and the
normal we get

curlΓ u(T
s
ννν(x)) = ∇ũ(Ts

ννν(x))× n(Ts
ννν(x))

= DTs
ννν(x)

−T (∇ũ ◦ Ts
ννν)(x)×

DTs
ννν(x)

−T
n0(x)

‖DTs
ννν(x)

−T n0(x)‖

=
det(DTs

ννν(x)
−T )DTs

ννν(x)

‖DTs
ννν(x)

−T n0(x)‖

(

(∇ũ ◦ Ts
ννν)(x)× n0(x)

)

=
DTs

ννν(x)

ωs(x)
(curlΓ0

u ◦ Ts
ννν)(x),

where we used the identity (Ma)× (Mb) = det(M)M−T (a× b) for a regular matrix M ∈ R
3,3

and vectors a,b ∈ R
3, and n0(x) is the outward normal and curlΓ0

is the surface curl on the
reference boundary Γ0.

Based on the pullbacks, we define (bi)linear forms on reference boundaries which look similar
to (21) but include functions from spaces on the reference domain.

â•,NV (s; ψ̂, φ̂) :=

∫

Γ0
N

∫

Γ0
•

G∆(Ts
ννν(x),T

s
ννν(y)) ψ̂(y) φ̂(x) dS(y)dS(x),

â•,NK (s; ĝ, φ̂) :=

∫

Γ0
N

∫

Γ0
•

∇yG
∆(Ts

ννν(x),T
s
ννν(y)) · C(DTs

ννν(y))n
0
2(y) ĝ(y) φ̂(x) dS(y)dS(x),

l̂•(s; ĝ, φ̂) :=

∫

Γ0
•

ĝ(x) φ̂(x) dS(x).

â•,NW (s; ĝ, v̂) :=































∫

Γ0
N

∫

Γ0
•

G∆(Ts
ννν(x),T

s
ννν(y))

d

dt̂
ĝ(y)

d

dt̂
v̂(x) dS(y)dS(x), (2D)

∫

Γ0
N

∫

Γ0
•

G∆(Ts
ννν(x),T

s
ννν(y))

(

DTs
ννν(y) curlΓ0

ĝ(y)
)

·

(

DTs
ννν(x) curlΓ0

v̂(x)
)

dS(y)dS(x) (3D)
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Using a similar procedure we can also get a transformed energy functional Ĵ

Ĵ(s; û, ψ̂) :=
ε2

2

∫

∂Ω0

(û(x) + ĝ
′
s(x)) (η̂

′
s(x) + ψ̂(x)) dS(x)

Finally our system of equations become: seek ûs ∈ H̃
1

2 (Γ0
N ), ψ̂s ∈ H̃− 1

2 (Γ0
D), ûsI ∈ H

1

2 (Γ0
I) and

ψ̂s
I ∈ H− 1

2 (Γ0
I) such that

âG,I
W (s; ûs, v̂I) + (1 +

ε1

ε2
)âI,IW(s; ûsI , v̂I) + âI,GK (s; v̂I , ψ̂s) + 2âI,IK (s; v̂I , ψ̂

s
I)

= −âG,I
W (s; ĝ′s, v̂I)− âI,GK (s; v̂I , η̂

′
s) ∀v̂I ∈ H

1

2 (Γ0
I),

âG,I
V (s; ψ̂s, φ̂I) + (1 +

ε2

ε1
)âI,IV (s; ψ̂s

I , φ̂I)− âG,I
K (s; ûs, φ̂I)− 2âI,IK (s; ûsI , φ̂I)

= −âG,I
V (s; η̂′s, φ̂I) + âG,I

K (s; ĝ′s, φ̂I) ∀φ̂I ∈ H− 1

2 (Γ0
I),

âI,GV (s; ψ̂s
I , φ̂) + âG,G

V (s; ψ̂s, φ̂)− âI,GK (s; ûsI , φ̂)− âG,G
K (s; ûs, φ̂)

=
1

2
lG(s; ĝ′s, φ̂)− âG,G

V (s; η̂′s, φ̂) + âG,G
K (s; ĝ′s, φ̂) ∀φ̂ ∈ H̃− 1

2 (Γ0
D),

âI,GW (s; ûsI , ṽ) + âG,G
W (s; ûs, v̂) + âG,G

K (s; v̂, ψ̂s) + âG,I
K (s; v̂, ψ̂s

I)

=
1

2
lG(s; v̂, η̂′s)− âG,G

W (s; ĝ′s, v̂)− âG,G
K (s; v̂, η̂′s) ∀v̂ ∈ H̃

1

2 (Γ0
N ).

(24)

At this point we make the assumption that ννν|∂Ω0
≡ 0. Consequently the boundary ∂Ω0 does

not change under the perturbation map, neither do the known traces on ∂Ω0. Exploting this we
write η̂′s = η′ and ĝ′s = g′ which will make the task of computing partial derivatives with respect
to s easier in the next sub-section.

Introducing the notation V := H̃− 1

2 (Γ0
D)×H̃

1

2 (Γ0
N )×H− 1

2 (Γ0
I)×H

1

2 (Γ0
I),X := (ψ̂, û, ψ̂I , ûI) ∈

V , Xs := (ψ̂s, ûs, ψ̂
s
I , û

s
I) ∈ V and Y := (φ̂, v̂, φ̂I , v̂I) ∈ V , the system of equations in (24) can

be written as: seek Xs ∈ V such that A(s;Xs,Y) = L(s;Y) ∀Y ∈ V . The bilinear and linear
forms A and L are given as

A : R× V × V → R, A(s;X,Y) :=

âG,I
W (s; û, v̂I) + (1 +

ε1

ε2
)âI,IW(s; ûI , v̂I) + âI,GK (s; v̂I , ψ̂) + 2âI,IK (s; v̂I , ψ̂I)+

âG,I
V (s; ψ̂, φ̂I) + (1 +

ε2

ε1
)âI,IV (s; ψ̂I , φ̂I)− âG,I

K (s; û, φ̂I)− 2âI,IK (s; ûI , φ̂I)+

âI,GV (s; ψ̂I , φ̂) + âG,G
V (s; ψ̂, φ̂)− âI,GK (s; ûI , φ̂)− âG,G

K (s; û, φ̂)+

âI,GW (s; ûI , v̂) + âG,G
W (s; û, v̂) + âG,G

K (s; v̂, ψ̂) + âG,I
K (s; v̂, ψ̂I)

L : R× V → R, L(s;Y) :=

− âG,I
W (s; g′, v̂I)− âI,GK (s; v̂I , η

′)− âG,I
V (s; η′, φ̂I) + âG,I

K (s; g′, φ̂I)+

1

2
l̂G(s; g′, φ̂)− âG,G

V (s; η′, φ̂) + âG,G
K (s; g′, φ̂) +

1

2
l̂G(s; v̂, η′)−

âG,G
W (s; g′, v̂)− âG,G

K (s; v̂, η′)

This formulation is equivalent to our s-dependent model problem as a solution of the original
formulation (20) also solves this pulled back formulation by definition. Conversely, if ûs ∈
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H̃
1

2 (Γ0
N ), ψ̂s ∈ H̃− 1

2 (Γ0
D), ûsI ∈ H

1

2 (Γ0
I) and ψ̂s

I ∈ H− 1

2 (Γ0
I) solve (24) then using the fact that

Ts
ννν is a diffeomorphism and using the pullbacks, we recover the original formulation (20).

3.5 BIE Constrained Shape Derivative: Adjoint Method

While shape differentiating the field energy, we need to account for the constraint (24). We
do this using the well-established adjoint approach [13, Sect. 1.6.4]. We start by defining the
Lagrangian:

L : R× V × V → R, L(s;X,Y) := A(s;X,Y)− L(s;Y) + J(s;X),

where

J : R× V → R, J(s;X) :=
ε2

2

∫

∂Ω0

(û(x) + g
′(x)) (η′(x) + ψ̂(x)) dS(x)

We recover the energy functional by plugging in the pulled back state solution into the La-
grangian.

L(s;Xs,Y) = J(s;Xs) = JF (s)

Using the adjoint solution P, the shape derivative is given as:

d

ds
JF (0) =

∂

∂s
L(0;X0,P)

where the adjoint solution P := (ρ̂, p̂, ρ̂I , p̂I) solves the equation
〈

∂
∂X

L(0;X0,P);Z
〉

= 0 ∀Z :=
(β,w, βI , wI) ∈ V . Written out more explicitly, the adjoint equation is

A(0;Z,P) = −
ε2

2

(

l̂G(w, η′ + ψ̂0) + l̂G(g′ + û0, β)
)

∀Z ∈ V. (25)

The adjoint equation contains a similar LHS to our state problem (24) and a modified RHS. The
partial derivatives with respect to s are computed by differentiating with respect to s under the
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integral

∂

∂s
â•,NV (0; ψ̂, φ̂) =

∫

Γ0
N

∫

Γ0
•

(∇xG
∆(x,y) · ννν(x) +∇yG

∆(x,y) · ννν(y)) ψ̂(y) φ̂(x) dS(y)dS(x),

∂

∂s
â•,NK (0; ĝ, φ̂) =

∫

Γ0
N

∫

Γ0
•

(∇x(∇yG
∆(x,y))T · ννν(x) +∇y(∇yG

∆(x,y))T · ννν(y)) · n0
2(y)·

ĝ(y) φ̂(x) dS(y)dS(x) +
∫

Γ0
N

∫

Γ0
•

∇yG
∆(x,y) · (∇ · ννν(y)n0

2(y)−DνννT (y)n0
2(y))·

ĝ(y) φ̂(x) dS(y)dS(x),

∂

∂s
l̂•(0; ĝ, φ̂) = 0,

∂

∂s
â•,NW (0; ĝ, v̂) =











































































∫

Γ0
N

∫

Γ0
•

(∇xG
∆(x,y) · ννν(x) +∇yG

∆(x,y) · ννν(y))·

d

dt̂
ĝ(y)

d

dt̂
v̂(x) dS(y)dS(x), (2D)

∫

Γ0
N

∫

Γ0
•

(∇xG
∆(x,y) · ννν(x) +∇yG

∆(x,y) · ννν(y))·

curlΓ ĝ(y) · curlΓ v̂(x) dS(y)dS(x) + (3D)
∫

Γ0
N

∫

Γ0
•

G∆(x,y)
(

(Dννν(y) curlΓ ĝ(y)) · curlΓ v̂(x)+

curlΓ ĝ(y) · (Dννν(x) curlΓ v̂(x)
)

dS(y)dS(x),

(26)

where we have used the identities [19, Sect. 2.13]

∂

∂s
f ◦ Ts

ννν |s=0 = ∇f · ννν,
∂

∂s
C(DTs

ννν)|s=0 = ∇ · ννν Id − (Dννν)T .

The energy shape derivative is obtained by combining these partial derivatives

d

ds
JF (0)[X0,P] =

∂

∂s
L(0;X0,P) =

∂

∂s
A(0;X0,P)−

∂

∂s
L(0;P) +

∂

∂s
J(0;X0) =

∂

∂s
âG,I
W (0; û0, p̂I) + (1 +

ε1

ε2
)
∂

∂s
âI,IW(0; û0I , p̂I) +

∂

∂s
âI,GK (0; p̂I , ψ̂0) + 2

∂

∂s
âI,IK (0; p̂I , ψ̂

0
I )

+
∂

∂s
âG,I
V (0; ψ̂0, ρ̂I) + (1 +

ε2

ε1
)
∂

∂s
âI,IV (0; ψ̂0

I , ρ̂I)−
∂

∂s
âG,I
K (0; û0, ρ̂I)− 2

∂

∂s
âI,IK (0; û0I , ρ̂I)

+
∂

∂s
âI,GV (0; ψ̂0

I , ρ̂) +
∂

∂s
âG,G
V (0; ψ̂0, ρ̂)−

∂

∂s
âI,GK (0; û0I , ρ̂)−

∂

∂s
âG,G
K (0; û0, ρ̂)

+
∂

∂s
âI,GW (0; û0I , p̂) +

∂

∂s
âG,G
W (0; û0, p̂) +

∂

∂s
âG,G
K (0; p̂, ψ̂0) +

∂

∂s
âG,I
K (0; p̂, ψ̂0

I )

+
∂

∂s
âG,I
W (0; g′, p̂I) +

∂

∂s
âI,GK (0; p̂I , η

′) +
∂

∂s
âG,I
V (0; η′, ρ̂I)−

∂

∂s
âG,I
K (0; g′, ρ̂I)

−
1

2

∂

∂s
l̂G(0; g′, ρ̂) +

∂

∂s
âG,G
V (0; η′, ρ̂)−

∂

∂s
âG,G
K (0; g′, ρ̂)−

1

2

∂

∂s
l̂G(0; p̂, η′)

+
∂

∂s
âG,G
W (0; g′, p̂) +

∂

∂s
âG,G
K (0; p̂, η′),

(27)
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because ∂
∂s
J(0;X0) = 0. Now we will study the properties of the shape derivative expression.

3.6 Properties of Shape Derivative Formula

We saw in the previous sub-section that the shape derivative formula is a sum of double integrals
of the partial derivatives ∂

∂s
â•,NV (0; ψ̂, φ̂), ∂

∂s
â•,NK (0; ĝ, φ̂) and ∂

∂s
â•,NW (0; ĝ, v̂) with the state and

adjoint solutions plugged in. In this sub-section we will discuss the singularities of the kernels
in these integrals which will determine the properties of these expressions. It is to be noted that
when • 6= N, the integrals are well defined as the singularity is never encountered in the double
integral. So we will focus on the case • = N and write Γ instead of Γ∗. For the analysis we
assume ννν ∈ (C∞

0 (Ω))d and g′ ∈ C∞(∂Ω).
Next, we focus on the terms ∂âV

∂s
and ∂âW

∂s
to demonstrate the analysis techniques. A similar

analysis for ∂âK
∂s

can be found in [17, Sec. 4.4]. Using the expression for the fundamental solution,
we obtain its gradient:

∇yG
∆(x,y) =

1

2d−1π

x− y

‖x− y‖d
, d = 2, 3.

The boundary integral operator TV at the core of the expressions for ∂âV
∂s

and ∂ ˆaW
∂s

is

TV ψ(x) := −
1

2d−1π

∫

Γ

x− y

‖x− y‖d
·
(

ννν(x)− ννν(y)
)

ψ(y) dS(y), x ∈ Γ (28)

= −
1

2d−1π

∫

Γ

KV(x,x− y) ψ(y) dS(y), KV(x, zzz) :=
zzz

‖zzz‖d
·
(

ννν(x)− ννν(x− zzz)
)

.

Using the assumption on the velocity field ννν, we can do a local Taylor expansion

ννν(x)− ννν(x− zzz) = Dννν(x)zzz −
1

2
D2 ννν(x)(zzz,zzz) +O(‖zzz‖3) for zzz → 0,

which gives us

KV(x, zzz) = K1
V(x, zzz) +K2

V(x, zzz), K1
V(x, zzz) :=

zzzT Dννν(x)zzz

‖zzz‖d
.

For d = 2 we observe that K1
V(x, zzz) is a homogeneous kernel of class −1 as its first order

derivatives in zzz are homogeneous with degree −1 = −(d − 1) and are odd. We also observe
that zzz 7→ K2

V(x, zzz) ∈ W 1,∞(R2) for all x ∈ Ω. Finally the assumptions on ννν give us regularity
of x 7→ KV(x, zzz). Thus KV(x, zzz) is a pseudo-homogeneous kernel of class −1 according to the
definition in [16, Sec. 4.3.3].

For d = 3 we first redefine the notations as

KV(x, zzz) = K1
V(x, zzz) +K2

V(x, zzz) +K3
V(x, zzz),

K1
V(x, zzz) :=

zzzT Dννν(x)zzz

‖zzz‖d
, K2

V(x, zzz) :=
1

2

zzzT D2 ννν(x)(zzz,zzz)

‖zzz‖d
.

and see that the first order derivatives of zzz 7→ K1
V(x, zzz) are homogeneous with degree −2 =

−(d− 1) and are odd, making it pseudo homogeneous of class −1. The same holds true for the
second order derivatives of zzz 7→ K2

V(x, zzz) which makes it of class −2. The rest of the terms
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encapsulated in zzz 7→ K3
V(x, zzz) belong to W 1,∞(R3). Using regularity of ννν we conclude that

KV(x, zzz) is pseudo-homogeneous of class −1.
The pseudo-homogeneity discussed is enough to invoke [16, Thm. 4.3.2]. Combining it with

results from [8, Sec. 1.3] on scales of Sobolev spaces Hs(Γ) supported on boundaries of class
Cr,1, r ∈ N0 [8, Def. 1.2.1.1], we get the mapping properties which are summarized next.

• Under the assumption on ννν and for Γ of class Cr,1, the boundary integral operator TV from
(3.6) is a bounded operator H l− 1

2 (Γ) → H l+ 1

2 (Γ) for all r − 1
2 ≤ l ≤ r + 1

2 . By duality we

have that ∂âV
∂s

is a continuous mapping, ∂âV
∂s

: H l− 1

2 (Γ)×H−l− 1

2 (Γ) → R.

• In 2D ∂âW
∂s

contains one double integral which features the same pseudo-homogeneous kernel

of class −1 as in ∂âV
∂s

. Using integration by parts ∂âW
∂s

(0;u, v) =
〈

v, d
dt

◦ TV ◦ d
dt
(u)
〉

L2(Γ)
.

Since TV : H l(Γ) → H l+1(Γ),−r − 1 ≤ l ≤ r, we have d
dt

◦ TV ◦ d
dt

: H l+1(Γ) → H l(Γ)

which yields that ∂âW
∂s

: H l+1(Γ)×H−l(Γ) → R is a continuous map.

• In 3D ∂âW
∂s

contains two integrals with different kernels as seen in (26). The second integral
is just the bilinear form for the Hypersingular BIO which is a continuous map H l+1(Γ)×
H−l(Γ) → R for −r − 1 ≤ l ≤ r. We get the same mapping property for the first integral
which features the pseudo-homogeneous kernel of class −1 from eq. (3.6), as seen in ∂âV

∂s
.

Thus we find that ∂âW
∂s

: H l+1(Γ)×H−l(Γ) → R is a continuous map in 3D.

• For detailed analysis of ∂âK
∂s

we refer to [17, Sec. 4.4] and simply mention the mapping

property, ∂âK
∂s

: H l(Γ)×H−l(Γ) → R for Γ of class Cr,1, where −r − 1 ≤ l ≤ r + 1.

Summarizing the results we find that the shape derivative formula (27) is continuous on
the energy trace spaces which also implies that it is C∞-smooth, which enables its Galerkin
approximation to enjoy superconvergence [17, Prop. 1.2].

4 Numerical Experiments in 2D

This section is focused on demonstrating the numerical efficacy of the new shape derivative
formula (27) by using it to compute forces and torques, and comparing it with the interface-
based methods introduced earlier in Section 2.3. For the sake of completeness, we will also show
a comparison with a volume-based formula and FEM.

4.1 Implementation

The BEM solution for both state and adjoint problem is computed using 2DParametricBEM, a
C++ library for BEM in 2D which uses exact parametrization for the boundaries. It evaluates
the integrals with weakly singular kernels, like that of Single and Double layer potential, using log
weighted Gauss quadrature (order 16) and regularization by transformation to polar coordinates
[9, Section 9.4.5]. The state and adjoint solutions are evaluated using lowest order BEM spaces
S−1
0 (∂Ωh) and S

0
1(∂Ωh) on a quasi-uniform sequence of mesh partitions of ∂Ω2 with decreasing

meshwidth h. In the implementation, the extended trace g′ is constructed using a smooth
extension of g by zero to ∂Ω, which on the discrete level can be implemented by using zero
coefficients for g′h ∈ S0

1(Mh) on mesh elements corresponding to ΓN . The extension of η ≡ 0 to
η′ is trivial.

The shape derivative formula (27) is also implemented in 2DParametricBEM using similar
techniques to evaluate integrals with weakly singular kernels. For implementation we assume
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that the perturbation field ννν is available in a functional form along with its first and second
derivatives. Smooth integrals are simply evaluated using Gauss quadrature of order 16.

For comparison with the volume formula we use a FEM implementation4 done using LehrFEM++.
The potential solution u is evaluated directly inside the volume using P1 finite elements on a
quasi-uniform sequence of triangular meshes Ωh of Ω with decreasing mesh size h. Since the
mesh is not parametric for FEM computations, a polygonal approximation of smooth curved
boundaries is used.

4.2 Force Computation

For computing forces using the shape derivative formula, we use specific vector fields. The
cartesian components of the net force F = (F1, F2, ..., Fd) ∈ R

d acting on the interface ΓI can be
computed using vector fields parallel to the coordinate axis:

Fk =
dJF

dΩ
(Ω; {xxx→ eeekξ(x)}),

where ξ ∈ C∞
0 (Ω) and ξ ≡ 1 in a neighborhood of ΓI . This makes the computations simpler as we

can assume the first and second derivatives of the perturbation field to be zero in a neighborhood
around ΓI .

The force evaluated using the above recipe is compared to the interface based formula from
(15), which is evaluated using the BEM solution and the trace of the FEM solution. For the sake
of completeness we also do a comparison with the volume based ”egg-shell” formula [10],[11],[15]
which is computed by plugging the FEM solution into

F = −

∫

Ω

ε(x)

(

∇u(x) (∇u(x) · ∇w(x))−
1

2
‖∇u(x)‖2 ∇w(x)

)

dx, (29)

where w ∈W 1,∞(Ω) with w|ΓI
≡ 1 and w|∂Ω ≡ 0. We perform numerical computations on two

domains

• A square shaped Ω := (−2, 2)2 and a smooth kite-shaped Ω1 given by the parametrization

γ : [0, 2π] → R
2, t 7→

[

0.3 + 0.5 cos(t) + 0.1625 cos(2t)
0.5 + 0.35 sin(t)

]

.

• A square shaped Ω := (−2, 2)2 and a square-shaped Ω1 := (0, 1)2

The coarsest volume meshes can be seen in Figure 2 for both geometries. The Dirichlet boundary
conditions in both cases are given as g(−2, y) = 4, g(2, y) = 0, y ∈ [−2, 2] and the Neumann
data η = 0. For the volume based formula (29), we use the cut-off function

w(x) :=











1 for ||x|| < 1.4

cos2( ||x||−1.4
0.5

π
2 ) for 1.4 ≤ ||x|| ≤ 1.9

0 for ||x|| > 1.9

The reference values are computed using the shape derivative formula at a refinement level of
4728 panels for the kite-shaped Ω1 and 5120 panels for the square-shaped Ω1. Figure 3 shows
the convergence plots for relative error of the computed force vs meshwidth h for both domains.

From the plots we can immediately see that the shape derivative formula outperforms other
methods in terms of absolute accuracy as well as the asymptotic convergence rate, which are
tabulated in Table 1. The worst formula in terms of performance is the interface-based formula
from (15).

4Code is available at https://github.com/gninr/FCSCD.git
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(a) Kite-shaped Ω1 (b) Square-shaped Ω1

Figure 2: Geometries for the numerical experiments

(a) Kite-shaped Ω1 (b) Square-shaped Ω1

Figure 3: Error of total forces as a function of the meshwidth h. Dashed lines represent the
linear regression fits.

Table 1: Asymptotic rate of algebraic convergence

Method Kite-shaped Ω1 Square-shaped Ω1

Pullback approach (BEM) 2.96 1.76
Stress tensor (BEM) 1.76 0.648

Volume formula (FEM) 2.29 1.73
Stress tensor (FEM) 1.06 1.09
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(b) Square-shaped Ω1

Figure 4: Error of net torque as a function of the meshwidth h. Dashed lines represent the linear
regression fits.

4.3 Torque Computation

For computing the net torque about a point ccc ∈ R
2 using the shape derivative, we use a rotational

field around the point ccc. The net torque on Ω1 is given as

T =
dJF

dΩ
(Ω; {xxx→ (x− ccc)⊥ξ(x)}),

where ξ ∈ C∞
0 (Ω) and ξ ≡ 1 in a neighborhood of ΓI . This will be compared to torque computed

using the Maxwell stress tensor formula. We know from Section 2.4 that the surface force density
at the interface ΓI is [T(u)] · n1. Using this we can compute torque on an infinitesimal section
of the boundary and integrate it to get the net torque:

T =

∫

ΓI

det
[

x− ccc, [T(u)(x)]n(x)
]

dS(x).

We use the determinant instead of a cross product which is used to define the torque. The reason
for that is the 2D experimental setting. The torque can be evaluated using the cross product
after extending the 2 dimensional vectors in our expression with a zero to make them a 3D vector.
Numerical computations are done in the same experimental setting introduced in the previous
subsection. As reference solution we use the torque evaluated using the shape derivative formula
at a refinement level of 4728 panels for the kite-shaped Ω1 and 5120 panels for square-shaped
Ω1. Figure 4 shows the plot of relative error in the computed torque vs the meshwidth h for
both domains. The asymptotic convergence rates are given in Table 2.

Table 2: Asymptotic rate of algebraic convergence

Method Kite-shaped Ω1 Square-shaped Ω1

Pullback approach (BEM) 4.38 1.69
Stress tensor (BEM) 2.78 0.84
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5 Conclusion

Based on the virtual work principle and harnessing shape calculus we derived a new way for
computing electrostatic forces on interfaces between homogeneous dielectric media. Our approach
is compatible with the boundary element method in that it entirely relies on approximations of
Dirichlet and Neumann traces on the interface and special boundary integral operators. Most
importantly, the resulting expressions for the forces given in (27) are continuous functionals on
energy trace spaces, which paves the way for superconvergence when they are used in the context
with Galerkin approximation. In numerical experiments we have seen that this effect provides
remarkably fast convergence and high accuracy of the computed forces. In this respect our new
approach is clearly the best way to determine electrostatic forces in BEM-based simulations.

The use of the new formulas carries a price tag: It entails solving another discrete boundary
integral equation, the adjoint problem, and the evaluating a number of integral operators with
singular kernels. Fortunately, these operators are structurally similar to the standard integral
operators and, therefore, amenable to the same regularizing quadrature schemes and compression
techniques. This makes possible the reuse of existing algorithms and the data structures set up for
compressing the regular discrete boundary integral operators can reused also for those occurring
in the new formula (27).
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