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Abstract

Locally periodic, elliptic multiscale problems in a bounded Lipschitz domain
D ⊂ Rn with K ≥ 2 separated scales are reduced to an elliptic system
of K coupled, anisotropic elliptic one-scale problems in a cartesian product
domain of total dimension Kn (e.g. (2; 3; 11; 26)). In (23; 31), it has been
shown how these coupled elliptic problems could be solved by sparse tensor
wavelet Finite Element methods in log-linear complexity with respect to the
number N of degrees of freedom required by multilevel solvers for elliptic
one-scale problems in D with the same convergence rate. In the present
paper, the high dimensional one-scale limiting problems are discretized by a
sparse tensor product finite element method (FEM) with standard, one-scale
FE basis functions as used in engineering FE codes. Sparse tensorization and
multilevel preconditioning is achieved by a BPX multilevel iteration.

We show that the resulting sparse tensor multilevel FEM resolves all
physical length scales throughout the domain, with efficiency (i.e., accuracy
versus work and memory) comparable to that of multigrid solvers for elliptic
one-scale problems in the physical domainD. In particular, our sparse tensor
FEM gives numerical approximations of the correct homogenized limit as well
as compressed numerical representations of all first order correctors, through-
out the physical domain with performance independent of the physical prob-
lem’s scale parameters. Numerical examples with standard FE shape func-
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tions and BPX multilevel preconditioners for elliptic problems with K = 2
separated, physical scales in spatial dimension n = 2 confirm the theoretical
results. In particular, the present approach allows to avoid the construction
of wavelet FE bases necessary in previous work (23; 31) while achieving res-
olution of all scales throughout the physical domain in log-linear complexity,
with the logarithmic exponent behaving linearly in the number K of scales.

Keywords: Multiscale elliptic boundary value problem, reiterated
homogenization, two-scale convergence, sparse tensor product FEM, BPX
multilevel preconditioner, frames.

1. Introduction

Partial differential equations whose solutions exhibit multiple spatial and
temporal length scales are ubiquitous models in engineering and in the sci-
ences. Direct numerical resolution of all scales inherent in the solution is
usually prohibitive, even on advanced computing hardware. There are two
approaches to deal with multiple scales: the modelling approach and the mul-
tiscale numerics approach. The modelling approach replaces (“models”) the
mathematical governing equations with multiple scales by approximate gov-
erning equations which exhibit only a single scale. The multiscale numerics
approach aims at scale robustness, i.e., at resolving all scales at accuracy ver-
sus computational complexity independent of the problem’s scale parameters.

The modelling approach is used, for example, in closure models in ki-
netic theory and turbulence or in homogenization theory where so-called
“effective” or “averaged” equations are analytically derived prior to numer-
ical computation. Multiscale numerical schemes have emerged in the past
decade as a powerful alternative to the modelling approach. We mention
only “HMM”-type methods for elliptic homogenization problems (see, e.g.
(1) and the references there) and generalized FEM which encode the fine
scale of the solution into special, problem adapted basis functions. These
methods are, as a rule, scale robust, but require in general more work to
achieve a given accuracy than comparable methods for one-scale problems.

In the present paper, we develop a scale robust Finite Element Method
(FEM) for scale separated elliptic multiscale problems in a bounded Lipschitz
domain D ⊂ Rn. Besides being scale robust, moreover, we prove that the
complexity of the proposed FEM equals, up to logarithmic terms, that of a
multilevel solver for an elliptic one-scale problem in D.

Our approach is based on the observation that solutions of elliptic multi-
scale problems can be completely described as solutions of elliptic one-scale
problems on high dimensional domains. More recently, in (11–13) and the

2



references there, the “unfolding” formalism towards two-scale convergence
and reiterated homogenization developed in (2; 3) based on the pioneer-
ing (26), has been developed. This development revealed in particular that
the high dimensional, anisotropic elliptic one-scale problems arise generi-
cally (even in nonlinear problems when “homogenization formulas” and up-
scaling are not available) as characterizations of one-scale limits of elliptic
multiscale problems: roughly speaking, elliptic multiscale problems in n spa-
tial dimensions with K separated scales result in “unfolded”, anisotropic and
high-dimensional elliptic one-scale problems in dimension nK, i.e., in com-
putations, multiple spationtemporal scales can be traded for high dimension.

As we observed in (23; 30) the natural idea of a Galerkin discretization
of these high-dimensional, one-scale, “unfolded” elliptic limit problems on
the tensor product of the physical domain D and K − 1 unit-cells Y ⊂
Rn is hampered1 by the fact that a straightforward discretization by tensor
product finite elements with optimal, linear complexity solvers would yield
scale robust solvers which require, however, O(h−Kn) degrees of freedom
which is suboptimal for K > 1. Here, O(·) is independent of ε and h denotes
the mesh width of a shape regular, simplicial finite element mesh onD×Y ×
· · ·× Y .

Hierarchical Finite Element bases, such as wavelet or multilevel bases, are
used to build sparse tensor product FE spaces (see, e.g., (8; 18; 23; 31; 37)).
On complicated domains of engineering interest the construction of Riesz
bases of Finite Element type which respect essential boundary conditions is
a nontrivial task. In the present work, we therefore show that multilevel
frames based on standard, one scale finite elements admit spare tensor con-
structions. We propose a new, sparse tensor Finite Element algorithm and
prove that it allows to approximate the homogenized solution and all inter-
actions (“correctors”) between the K length scales in the physical solution in
essentially the complexity required to discretize an elliptic one-scale problem
in D ⊂ Rn, i.e., in work and memory O(h−n| log(h)|α) with some α > 0.

The basis of our frame construction are two2 families of nested finite
element spaces

U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ H1(D), V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ H1
per(Y ) (1)

as used in any multilevel scheme.
On a polyhedron D ⊂ Rn resp. on the unit cell Y = [0, 1]n, multilevel

subspace sequences (1) are built by the standard procedure of uniformly

1For ease of exposition, we assume that all unit cells coincide with Y = [0, 1]n; analogous
results are available for distinct unit cell geometries on each scale.

2Different unit cell geometries imply a separate multilevel hierarchy at each scale.
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refining initial, regular simplicial triangulations of the domains D and Y .
Unless stated explicitly otherwise, we assume that our Finite Elements are
regular, affine families in the sense of Ciarlet (10). In case of curved domains
we employ parametric finite elements to realize (1). The construction of
parametric finite elements is based on a decomposition of the given domain
into (curved) simplicial patches and suitable diffeomorphisms between the
reference simplex and these patches. Uniform refinement of the reference
simplex will lead then to a nested mesh of the domain. On each patch
hierarchic families of simplicial finite elements are defined by transporting
affine, simplicial families to the patch via parametrizations; parametrizations
of adjacent patches are assumed to be C0-compatible, so that subspaces and
basis functions are assumed to match continuously across patch boundaries.
The push-forward and pull-back operators, required in finite element based
methods, can be derived from the underlying diffeomorphisms.

The outline of the paper is as follows. Section 2 introduces the homoge-
nization problem under consideration and the related one-scale limiting prob-
lem. Section 3 is concerned with the full tensor product discretization by fi-
nite elements. The sparse tensor product discretization by multilevel frames
is introduced and investigated in Section 4. Numerical results for elliptic
two-scale problems are presented in Section 5. Finally, we state concluding
remarks in Section 6.

Throughout the paper, in order to avoid the repeated use of generic but
unspecified constants, by C ! D we mean that C can be bounded by a
multiple of D, independently of parameters which C and D may depend on.
Obviously, C " D is defined as D ! C, and C ∼ D as C ! D and C " D.

Acknowledgement. The paper was completed at the Institute for
Mathematics and Its Applications, University of Minnesota, during the work-
shop Computing with Uncertainty: Mathematical Modeling, Numerical Ap-
proximation and Large Scale Optimization of Complex Systems with Uncer-
tainty from October 18–22, 2010. The excellent working conditions at the
IMA are gratefully acknowledged.

2. Elliptic K-scale problem

We formulate the elliptic homogenization problem withK scales and state
the limiting problem as well as an error estimate between the solution of the
limiting problem and the solution of the physical problem.

2.1. Problem formulation

In a bounded Lipschitz domainD ⊂ Rn, and inK−1 unit cells Y1, . . . , YK−1

for the K − 1 ≥ 1 fast scales of the problem, we assume given an (n × n)-
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matrix function A depending on K ≥ 2 variables in the following fashion:

A(x,y1, . . . ,yK−1) ∈ L∞
(
D,Cper(Y1 × · · ·× YK−1)

)n×n

sym

where, for all K > k ≥ 1, we denote by Cper(Y1 × · · · × Yk) the space
of continuous functions φ(y1, . . . ,yk), which admit continuous, Yi-periodic
extensions to all of Rn with respect to each coordinate yi for i = 1, . . . , k.
The matrix function A is assumed periodic with respect to yi with identical3

periods Yi = [0, 1]n for each i = 1, . . . , K − 1. We assume that A is bounded
and uniformly positive definite, i.e., that there is a constant γ > 0 such that
for all ξ ∈ Rn

γ|ξ|2 ≤ ξ%A(x,y1, . . . ,yK−1)ξ ≤ γ−1|ξ|2, (2)

for all x ∈ D and yk ∈ Y , k = 1, . . . , K−1. For a scale parameter ε > 0 and
a source term f ∈ L2(D), we consider the Dirichlet problem

− divAε∇uε = f in D, uε = 0 on ∂D. (3)

The (n× n)-matrix Aε is assumed to depend on ε with multiple scales in
the following sense: there exist K − 1 positive scale functions ε1, . . . , εK−1

of ε that depend monotonically and continuously on ε and that converge to
0 when ε → 0. The coefficient Aε in (3) is assumed to be scale separated in
the sense that

lim
ε→0

εi+1/εi = 0 for all i = 1, . . . , K − 2 (4)

and for all x ∈ D and all 0 < ε < 1

Aε(x) = A

(
x,

x

ε1
, . . . ,

x

εK−1

)
.

Mathematical homogenization is the study of the limit of uε when ε tends
to 0. Various approaches to this end have been developed. The oldest one
is comprehensively exposed in Bensoussan, Lions and Papanicolaou (5). It
consists in performing a formal multiscale asymptotic expansion and then in
the justification of its convergence using the energy method due to Tartar
(36). A significant result obtained with this approach was the existence of
a (L2(D)-) limit u(x) of uε and, more importantly, the identification of a
limiting, “effective” or “homogenized” elliptic problem in D satisfied by u.

3This assumption is adopted for ease of exposition only; all that follows has verbatim
analogues in the case that at each scale i, there is a distinct periodicity pattern Yi.
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This approach has been widely used mainly for homogenization problems
involving two separated scales. For nonlinear problems or problems with
multiple scales it can only solve a restricted class of problems and becomes
very complicated (see (3) for details). Homogenization formulas characteriz-
ing the one-scale limiting problem are generally not available. Performing the
asymptotic expansion and using the energy method, have been combined to
a single and method of two-scale convergence (for two-scale problems) origi-
nally by Nguetseng (26) and developed further by Allaire (2) and generalized
to multiscale convergence by Allaire and Briane (3). This was extended re-
cently into the “unfolding” formalism towards multiscale problems by (11).
Rather than aiming at derivation of a single-scale, homogenized equation, a
single-scale multidimensional limiting equation still containing all “fast vari-
ables” is derived in (3; 11). This limiting problem does not contain the scale
parameters but still contains, to leading order, complete information on the
physical solution’s oscillations on all length scales. Bypassing the analytical
derivation of “effective” equations implies, however, the numerical solution
of a single-scale problem on a high dimensional domain. We review next
some known results on this limiting equation for which we develop below an
efficient sparse tensor FEM.

2.2. High-dimensional limit problem

A key ingredient of homogenization of elliptic problems with multiple
scales is the notion of multiscale convergence. We present the definition
here, based on Allaire and Briane (3).

Definition 2.1 ((3, Definition 2.3)). A sequence {uε}ε ⊂ L2(D) K-scale
converges to u0(x,y1, . . . ,yK−1) ∈ L2(D × Y1 × . . . YK−1) if

lim
ε→0

∫

D

uεφ

(
x,

x

ε1
, . . . ,

x

εK−1

)
dx

=

∫

D

∫

Y1

. . .

∫

YK−1

u0(x,y1, . . . ,yK−1)φ(x,y1, . . . ,yK−1)dxdy1 . . . dyK−1

for any function φ ∈ L2
(
D,Cper(Y1 × . . .× YK−1)

)
.

The application ofK-scale convergence to problem (3) lies in the following
compactness result:

Theorem 2.2 ((3, Theorem 2.5)). Under the assumption (4) of scale sepa-
ration, from each bounded sequence {uε}ε>0 ⊂ L2(D) we can extract a sub-
sequence which K-scale converges, as ε → 0, to a function u0 ∈ L2(D×Y1×
. . .× YK−1).
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The variational formulation of the K-scale limit is based on the space

V =
{
(φ0, {φk}) : φ0 ∈ H1

0(D),

φk ∈ L2
(
D × Y1 × · · ·× Yk−1, H

1
per(Yk)

)
, k = 1, . . . , K − 1

}

= H1
0 (D)×

K−1∏

k=1

[
L2(D)⊗

(
k−1⊗

i=1

L2(Yi)

)
⊗H1

per(Yk)

]
(5)

endowed with the norm

∥∥(φ0, {φi})
∥∥
V
=
(
‖∇φ0‖2L2(D) +

K−1∑

k=1

‖∇yk
φk‖2L2(D×Y1×···×Yk)

)1/2

(6)

for (φ0,φ1, . . . ,φK−1) ∈ V (in (5), tensor products over empty ranges of
indices are skipped). The norm ‖ · ‖V in (6) is anisotropic: it implies the
control of first derivatives only in yk of uk, k = 1, 2, . . . , K − 1. For the
one-scale limit of problem (3) holds

Theorem 2.3. As ε → 0 in (3), the solutions uε of (3) converge weakly in
H1

0 (D) to a function u0 ∈ H1
0 (D) and the gradient ∇uε K-scale converges to

the limit

∇u0(x) +
K−1∑

k=1

∇yk
uk(x,y1, . . . ,yk).

Here, the function u0(x) is the homogenized solution. The vector func-
tion (u0, {uk}) = (u0, u1, . . . , uK−1) of u0 and of the scale interaction terms
u1, . . . , uK−1 is independent of ε. It can be obtained as the unique solu-
tion in the space V of the “unfolded”, limiting variational problem: find
(u0, {uk}) ∈ V such that

b
(
(u0, {ui}), (φ0, {φi})

)

=

∫

D

∫

Y1

. . .

∫

YK−1

A

(
∇xu0 +

K−1∑

i=1

∇yi
ui

)

·
(
∇xφ+

K−1∑

j=1

∇yj
φj

)
dxdy1 . . . dyK−1 =

∫

D

fφdx (7)

for all (φ0, {φi}) ∈ V.
Under the ellipticity assumption (2), the bilinear form b is continuous

and coercive in V: there exist constants c1, c2 > 0 (depending only on D, K
and on the coercivity constant γ > 0 in (2), but being independent of ε) such
that

b
(
(u0, {ui}), (u0, {ui})

)
≥ c1

∥∥(u0, {ui})
∥∥2
V

(8)

7



for all (u0, {ui}) ∈ V and

b
(
(u0, {ui}), (v0, {vi})

)
≤ c2

∥∥(u0, {ui})
∥∥
V

∥∥(v0, {vi})
∥∥
V

(9)

for all (u0, {ui}), (v0, {vi}) ∈ V.

For a proof, we refer to (3, Theorem 2.11, Equation (2.9)).

Remark 2.4. The “unfolded” limit problem (7) is independent of the scale
parameter ε, and is formulated in terms of the a-priori known coefficient A
of the physical problem (3). Its (numerical) solution will yield the homog-
enized limiting solution u0 without explicit knowledge of the coefficients of
the homogenized equation; from the vector function (u0, u1, . . . , uK−1) the
“effective” coefficient A0(x) of the homogenized limiting equation

− div
(
A0(x)∇u0

)
= f in D, u0 = 0 on ∂D

satisfied by u0(x) can be obtained numerically if this is so desired.

Convergence of uε → u0 is strongly in L2(D), but only weak in H1(D),
since information on the oscillations is lost in passing to the homogenized
limit. This information is, to leading order, completely encoded in the scale
interaction terms u1, . . . , uK−1, as becomes clear from the following correc-
tor result. It makes precise the way in which the scale interaction terms
(u1, . . . , uK−1) account for the oscillations of uε at small, positive values of ε.

Theorem 2.5 ((3, Theorem 2.14)). Assume that the solution (u0, u1, . . . , uK−1)
of problem (7) is sufficiently smooth, say u0 ∈ C1(D) and uk ∈ C1

(
D,C1

per(Y1×
. . .× Yk)

)
for all k = 1, . . . , K − 1. Then

∥∥∥∥∥u
ε(x)−

[
u(x) +

K−1∑

k=1

εkuk

(
x,

x

ε1
, . . . ,

x

εk

)]∥∥∥∥∥
H1(D)

→ 0 as ε → 0.

Remark 2.6. If the data A,D, f are smooth then the functions u, uk are
all smooth. We can also pass to the limit for certain classes of non-smooth
matrices A. This leads to lower regularity of uk but nevertheless a corrector
can always be found using the inverse unfolding operator due to Cioranescu
et al. (11). Details about which matrices A are “admissible” may be found
in (3) and (11).
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Γint

Y

Figure 1: The domain Dε with unit cell Y .

2.3. Two-scale problem

We develop the sparse tensor Finite Element discretization in the partic-
ular case of K = 2 scales and an isotropic coefficient, i.e., we consider the
following elliptic homogenization problem in divergence form

− div

(
A
(
x,

x

ε

)
∇uε(x)

)
= f(x), (10)

where the diffusion coefficient A(x,y) ∈ L∞(D × Y ) is assumed to be Y -
periodic in the second variable y and uniformly positive

A(x,y) ≥ γ > 0 a.e. (x,y) ∈ D × Y.

The unit cell Y ⊂ [0, 1]n could be strictly included in [0, 1]n in which case we
assume the boundary

∂Y = Γint ∪ Γper, Γper := ∂Y ∩ [0, 1]n, Γint := ∂Y \ Γper,

to be Lipschitz continuous. Notice that if Y = [0, 1]n then Γint = ∅. If
Γint /= ∅ suitable boundary conditions have to be imposed at the boundary
Γint. We shall consider (10) in a bounded Lipschitz domain D ⊂ Rn covered
by a pavement of cells of the form ε(k+Y ) with k ∈ Zn and ε/ diam(D) 0 1.
We set

Dε := Dε
∞ ∩D, where Dε

∞ =
⋃

k∈Zn

ε(k+ Y ). (11)

9



We indicate the various sets in the preceding definitions in Figure 1. We
complete (10) in Dε by homogeneous Dirichlet boundary conditions

uε = 0 on ∂D. (12)

2.4. Limit problem
LetH1

per(Y ) denote the space of all [0, 1]n-periodicH1
loc(Y )-functions. The

space V in (5) for the variational formulation of the limiting problem reads

V :=
{
(w0, w1) : w0 ∈ H1

0 (D), w1 ∈ L2
(
D;H1

per(Y )/R
)}

1 H1
0 (D)× L2

(
D;H1

per(Y )/R
)
.

We note that by Fubini’s Theorem, the Bochner-type function space for the
scale interaction term u1 is isomorphic to a tensor product space, i.e.

L2
(
D;H1

per(Y )/R)
)
1 L2(D)⊗

(
H1

per(Y )/R
)

(13)

where ⊗ denotes the tensor product of separable Hilbert spaces. Accordingly,
the expression

‖(u0, u1)‖V =
(
‖∇xu0‖2L2(D) + ‖∇yu1‖2L2(D×Y )

)1/2

is a norm onV. OnV, the bilinear form B(·, ·) in the variational formulation
of the limiting problem (7) takes the form

b
(
(u0, u1), (v0, v1)

)
:=

∫

D

∫

Y

A(x,y)
(
∇xu0(x) +∇yu1(x,y)

)
(14)

·
(
∇xv0(x) +∇yv1(x,y)

)
dydx.

By (8) and (9), for any given linear form

& : V → R, &(v0, v1) :=

∫

D

f(x)v0(x)dx,

the variational problem

find (u0, u1) ∈ V such that

b
(
(u0, u1), (v0, v1)

)
= &(v0, v1) for all (v0, v1) ∈ V (15)

admits a unique solution (u0, u1) ∈ V. For the case of K = 2 scales which
is under consideration here, the convergence result Theorem 2.5 of uε ∈
H1

0 (D
ε) to the “folded” two-scale solution (u0, u1) ∈ V can be quantified in

in the following sense: according to (5; 24) and (23, Theorem 4.1) holds the
asymptotic error bound

∥∥∥u0 + εu1

(
·, ·
ε

)
− uε

∥∥∥
H1(Dε)

= O(
√
ε), (16)

provided that A ∈ W 1,∞(D;C∞
per(Y )) and that u0 ∈ H2(D).
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3. Finite element discretization

3.1. Multiresolution analyses

Let D ⊂ Rn be a polygonal and bounded domain with coarse grid trian-
gulation T0 = {τ0,k}. By uniform subdivision of each simplex on level j − 1
into 2n simplices on level j, we obtain recursively a nested family of sim-
plicial triangulations Tj = {τj,k} for all j > 0. On the triangulation Tj we
define standard Lagrangian piecewise polynomial continuous finite elements
Φj = {ϕj,k : k ∈ ∆j} (∆j denotes an appropriate index set) and obtain a
nested sequence of finite dimensional trial spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ H1(D), (17)

where

Vj = span{ϕj,k : k ∈ ∆j} = {u ∈ C(D) : u|τ ∈ Πd for all τ ∈ Tj}

where dimVj ∼ 2jn. For our approach it is convenient to normalize the
Lagrangian finite elements with respect to the energy space H1(D), i.e.,

‖ϕj,k‖H1(D) ∼ 1. (18)

The spaces Vj satisfy the following Jackson and Bernstein type estimates for
all s ≤ t < 3/2, t ≤ q ≤ d+ 1

inf
vj∈Vj

‖u− vj‖Ht(D) ! hq−t
j ‖u‖Hq(D), u ∈ Hq(D), (19)

and
‖vj‖Ht(D) ! hs−t

j ‖vj‖Hs(D), vj ∈ Vj , (20)

uniformly in j, where we set hj := 2−j. Here hj ∼ maxk{diam τj,k} denotes
the mesh width of the subspace Vj on D.

3.2. Curved domains and parametric finite elements

In case of non-polygonal domains with piecewise smooth boundaries we
can use parametric finite elements to realize the multiresolution analysis (17).
We assume that the domain D is given as a collection of simplicial smooth
patches. More precisely, let3 denote the reference simplex inRn. We assume
that the domain D is partitioned into M patches

D =
M⋃

k=1

τ0,k, τ0,k = κk(3), k = 1, 2, . . . ,M, (21)

11



κi

τ0,k

Figure 2: Construction of parametric finite elements

where each κk : 3 → τ0,k defines a diffeomorphism of 3 onto τ0,k. The
intersection τ0,k ∩ τ0,k′, k /= k′, any two patches τ0,k and τ0,k′ is supposed to
be either ∅, or a lower dimensional face.

A mesh of level j on D is induced by regular subdivisions of depth j of the
reference simplex into 2jn sub-simplices. This generates the 2jnM elements
{τj,k}. In order to ensure that the collection {τj,k} of elements on the level
j forms a regular mesh on D, the parametrizations {κk} are assumed to be
C0 compatible in the following sense: a bijective, affine mapping Ξ : 3 → 3
exists such that for all x = κi(s) on a common interfaces of τ0,i and τ0,i′ it
holds that κi(s) = (κi′ ◦Ξ)(s). In other words, the diffeomorphisms κi and
κi′ coincide at the common interface except for orientation. An illustration
of such a triangulation is found in Fig. 2.

Finally, we define the Finite Element ansatz functions via the parametriza-
tions {κi} in the usual fashion, i.e., by lifting Lagrangian finite elements from
3 to the domain D by using the mappings κi. Continuous basis functions
whose support overlaps with several patches are obtained by gluing across
patch boundaries, using the C0 interpatch compatibility. This yields a se-
quence of nested finite element spaces (17) that satisfy the same Jackson and
Bernstein type estimates (19) and (20) as the standard finite element spaces
from the previous subsection.

3.3. FEM discretization

Since we have to discretize two domains we need two dense families of
nested Finite Element spaces

U0 ⊂ U1 ⊂ · · · ⊂ Uj ⊂ · · · ⊂ H1(D), Uj = span{ϕj,k : k ∈ 3D
j },

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ H1
per(Y ), Vj = span{ψj,k : k ∈ 3Y

j }.

12



In order for the family {Uj}∞j=0 to be conforming to H1
per(Y ), we assume

that the corresponding sequence {3j}∞j=0 is Y -periodic, i.e., the Y -periodic
extension of 3j beyond the unit cell Y is a regular mesh in Rn; this assump-
tion forces compatibility of boundary nodes on ∂Y . We also assume that
both types of ansatz spaces have the same approximation order d (see Re-
mark 3.3 below). Moreover, to discretize functions in H1

0 (D) we will remove
the degrees of freedom associated with the boundary nodes which yields the
multiscale hierarchy

U◦
0 ⊂ U◦

1 ⊂ · · · ⊂ U◦
j ⊂ · · · ⊂ H1

0 (D), U◦
j = span{ϕj,k : k ∈ 3D

j }.

For sake of simplicity we shall assume that the diffusion coefficient is sepa-
rable, i.e., that

A(x,y) = α(x)β(y). (22)

In the (practically more frequent) case of non-separable coefficients, we ap-
proximate A(x,y) by a separable expansion

A(x,y) =
M∑

i=1

αi(x)βi(y), (23)

for example in terms of a truncated singular value decomposition.
If A ∈ C∞

(
D,C∞

per(Y )
)
, the error bound (16) holds, and for every M , a

separated expansion (23) can be computed in essentially linear complexity by
using the techniques from (34). For coefficient expansions (23) the following
developments will be applied term-by-term. Setting

b1(u0, v0) :=

∫

D

∫

Y

α(x)β(y)∇xu0(x)∇xv0(x)dydx,

b2(u0, v1) :=

∫

D

∫

Y

α(x)β(y)∇xu0(x)∇yv1(x,y)dydx, (24)

b3(u1, v1) :=

∫

D

∫

Y

α(x)β(y)∇yu1(x,y)∇yv1(x,y)dydx,

we arrive at (cf. (14))

b
(
(u0, u1), (v0, v1)

)
= b1(u0, v0) + b2(u0, v1) + b2(v0, u1) + b3(u1, v1). (25)

Next, we will introduce the system matrices for ansatz and test functions
on arbitrary levels. Of course, in standard finite element methods supports of
tensor-product shape functions are isotropic and, hence, the levels of ansatz
and test functions are always the same. But later on, in the context of the
sparse discretization scheme, this general situation will appear.

13



We will discretize u0 ∈ H1
0 (D) in the finite element space U◦

j and u1 ∈
L2(D)⊗H1(Y ) in the tensor product space Wj := Uj ⊗Vj . To do so, in view
of (22), we define the constant c := (β, 1)L2(Y ), the matrices associated with
the domain D

Gj,j′ :=
[
(αϕj′,k′,ϕj,k)L2(D)

]

k∈*D
j ,k′∈*D

j′

∈ R
|*D

j |×|*D
j′
|,

Bj,j′ :=
[
(α∇ϕj′,k′,∇ϕj,k)L2(D)

]

k∈*D
j ,k′∈*D

j′

∈ R
|*D

j |×|*D
j′
|, (26)

Fi
j,j′ :=

[
(αϕj′,k′, ∂xi

ϕj,k)L2(D)

]

k∈*D
j ,k′∈*D

j′

∈ R
|*D

j |×|*D
j′
|, i = 1, 2, . . . , n,

the matrices associated with the domain Y

Cj,j′ :=
[
(β∇ψj′,k′,∇ψj,k)L2(Y )

]

k∈*Y
j ,k′∈*Y

j′

∈ R
|*Y

j |×|*Y
j′
|,

bi
j :=

[
(∂yiψj,k, β)L2(Y )

]

k∈*Y
j

∈ R1×|*Y
j |, i = 1, 2, . . . , n,

(27)

and the data vector

fj :=
[
(f,ϕj,k)L2(D)

]

k∈*D
j

∈ R|*D
j |×1.

Then, by (24) and (25), the ansatz

u0,j =
∑

k∈*D
j
[u0,j ]kϕj,k ∈ U◦

j ,

u1,j =
∑

k∈*D
j

∑
k′∈*Y

j
[u1,j ]k,k′(ϕj,k ⊗ ψj,k′) ∈ Wj,

(28)

leads to the following symmetric and positive definite linear system of equa-
tions [

cBj,j

∑n
i=1 b

i
j ⊗ Fi

j,j
(∑n

i=1 b
i
j ⊗ Fi

j,j

)%
Cj,j ⊗Gj,j

] [
u0,j

u1,j

]
=

[
fj
0

]
. (29)

Remark 3.1. The constraint
∫

D

∫

Y

u1(x,y)w(x)dydx = 0 for all w ∈ L2(D)

is not discretized explicitly. The Galerkin solution (u0,j, u1,j) of (29) will
satisfy the constraint since the right hand side lies in V and Krylov subspace
solvers iterate orthogonal to the kernel (25), see also Subsection 4.3 for more
details.
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Céa’s lemma together with the approximation property (19) gives rise to
the following standard error estimate.

Proposition 3.2. Assume u0 ∈ H1+s
0 (D) and u1 = H1+s(D)⊗H1+s

per (Y )/R
for some 0 ≤ s ≤ d. Then, the sparse tensor FE approximation (u0,j, u1,j)
given by (28), (29) satisfies the error estimate

‖(u0, u1)− (u0,j, u0,j)‖V ! inf
(v0,j ,v1,j)∈Uj×Wj

‖(u0, u1)− (v0,j, v1,j)‖V

! hs
j

{
‖u0‖H1+s(D) + ‖u1‖Hs(D)⊗H1+s

per (Y )

}
.

Remark 3.3. It can be figured from this error estimate that it would be
sufficient to employ finite elements of order d − 1 to approximate in L2(D)
with optimal rate, i.e., in the first coordinate of u1. Nevertheless, we employ
the same finite elements as in H1(D) in order to keep the notation simple.

4. Sparse tensor two-scale FEM

4.1. Sparse tensor product spaces

The finite element discretization of u1 in the tensor product space Wj :=
Uj ⊗ Vj results in dim(Uj) · dim(Vj) ∼ 22jn degrees of freedom which is
prohibitively large. We approximate the “scale interaction function” u1 in
the sparse tensor product space

Ŵj := Ûj ⊗ Vj =
∑

$+$′≤j

U$ ⊗ V$′.

It owns much less degrees of freedom than the full tensor product space Wj.

Namely, there holds dim(Ŵj) ∼ 2jnj, cf. (8). Consequently, the discretization
of u1 will have essentially the same number of unknowns as the discretization
of u0.

The following lemma from (23) (see also (28; 33)), implies that the ap-
proximation power in the sparse tensor product spaces is nearly as good as
in the full tensor product spaces, provided that the given function has some
extra regularity in terms of bounded mixed derivatives.

Lemma 4.1. For w ∈ H t(D)⊗H t+1
per (Y ) for some 0 ≤ t ≤ d holds the error

estimate

inf
bwj∈cWJ

‖w − ŵj‖L2(D)⊗H1
per(Y ) !

{
2jt

√
j‖w‖Ht(D)⊗Ht+1

per (Y ), if t = d,

2jt‖w‖Ht(D)⊗Ht+1
per (Y ), otherwise.

15



4.2. Galerkin discretization
To approximate functions in ŴJ one traditionally uses hierarchical bases

like wavelet or multilevel bases, see for example (8; 17; 37). Here we will use
multilevel frames as proposed in (22), i.e., we will represent functions by the
redundant collection

Υ̂j :=
{
ϕ$,k ⊗ ψ$′,k′ : k ∈ ∆D

$ , k′ ∈ ∆Y
$′ , &+ &′ ≤ j

}
.

As one readily verifies it holds span{Υ̂j} = Ŵj and card(Υ̂j) ∼ 2jnj ∼
dim(Ŵj), i.e., this set has still optimal cardinality. We mention that the

frame Υ̂j is the restriction to Ŵj of the tensor product of the frames which
underly the BPX-preconditioners on D and Y (see (7; 15; 27)). For details
concerning the frame theory we refer the reader to e.g. (9; 16; 35).

The frame Υ̂j is stable in Hs(D) ⊗ H t(Y ) for all 0 < s, t < 3/2 if the
ansatz functions are properly scaled (22) (see also (20)). Since we need here
the limit case s = 0 the stability constant grows logarithmically in the level
index j, i.e., uniformly in j we have (cf. (22))

‖f‖2
L2(D)⊗H−1

per(Y )

!
∑

$+$′≤J

∑

k∈∆D
"

∑

k′∈∆Y
"′

2−$(f,ϕ$,k ⊗ ψ$′,k′)L2(D×Y ) (30)

! j‖f‖2
L2(D)⊗H−1

per(Y )

for all f ∈ L2(D)⊗H−1
per(Y ).

Then, similarly to (29), the ansatz

u0,j =
∑

k∈*D
j

[u0,j ]kϕj,k ∈ U◦
j ,

û1,j =
∑

$+$′≤j

∑

k∈*D
"

∑

k′∈*Y
"′

[û1,j ](k,$),(k′,$′)(ϕ$,k ⊗ ψ$′,k′) ∈ Ŵj

yields the following linear system of equations


 cBj,j

∑n
i=1

̂bi
j ⊗ Fi

j,j
(∑n

i=1
̂bi
j ⊗ Fi

j,j

)%
Cj,j ⊗Gj,j




[
u0,j

û1,j

]
=

[
fj
0

]
. (31)

Herein, the notion “ ·̂ ” indicates the application of the frame which implies

̂bi
j ⊗ Fi

j,j =
[
b$1 ⊗ Fi

j,$2

]
$1+$2≤j

,

̂Cj,j ⊗Gj,j =
[
C$1,$′1

⊗G$2,$′2

]
$1+$2,$′1+$′2≤j

.
(32)
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Proposition 4.2. The approximate solution (u0,j, û1,j) ∈ Uj × Ŵj from (31)
satisfies the error estimate

‖(u0, u1)− (u0,j, û1,j)‖V ! inf
(v0,j ,bv1,j)∈Uj×cWj

‖(u0, u1)− (v0,j , v̂1,j)‖V

! jhd−1
j

{
‖u0‖Hd(D) + ‖u1‖Hd−1(D)⊗Hd

per(Y )

}

provided that the given data are sufficiently smooth.

Remark 4.3. By using wavelets, for example Haar wavelets, instead of the
multilevel frame to discretize functions in L2(D), also the upper constant of
(30) is independent of the level j. Consequently, the (generalized) condition
number of the associated linear system of equations (31) would be indepen-
dent of the level j. However, we avoided wavelets to keep the algorithms as
simple as possible. Particularly our numerical results in Section 5 show that
the logarithm in (30) behaves quite harmless.

4.3. Iterative solution of the linear systems of equations

Due to the non-uniqueness of the representation of functions in frame
coordinates, the system matrix in (31) has a large kernel. However, the
associated right hand side lies in the image of the system matrix. Thus,
Krylov subspace methods converge without further modifications (see, e.g.,
(14; 17; 18; 25) for details). This is due to the Krylov subspace, and thus
the residuum, staying orthogonal to the kernel. Here, the system (31) is
symmetric. Hence, we can apply the conjugate gradient method. Applying
the BPX-preconditioner (7) for the finite element part associated with u0

and a diagonal scaling (by using the diagonals of the C$,$ and G$,$ which
are easily accessible) for the unknowns of the sparse tensor product space,
associated with u1, the ratio of the nonzero eigenvalues of the system matrix
will be essentially bounded independently of the mesh width. Therefore,
the conjugate gradient method will converge with a rate that is essentially
independent of the discretization level j at each physical length scale.

4.4. Prolongations and restrictions

Standard finite element tools provide only the system matrices Gj,j′ and
Cj,j′ in the case j = j′. However, also matrices with j /= j′ occur in frame
coordinates, see (32). Fortunately, such matrices can be provided by using
restrictions and prolongations.

Let U0 ⊂ U1 ⊂ · · · be the given sequence of finite element spaces in
H1(D). We denote the restriction of the function

fj =
∑

k∈∆D
j

fj,kϕj,k = Φjfj ∈ Uj

17



to the space U$, & <j , by I$j . The corresponding discrete operator will be
denoted by I$j , that is

I$jfj = Φ$I
$
jfj ∈ U$.

Conversely, Ij$ resp. Ij$ denotes the prolongation of f$ = Φ$f$ ∈ U$ onto Uj .
Both the application of the restriction I$j and the prolongation I

j
$ to a vector

is of complexity O(2nj) ∼ dimUj.
Invoking restriction and prolongation we obviously have

Gj,j′ =

{
Ijj′Gj′,j′, j ≤ j′,

Gj,jI
j
j′, j > j′.

(33)

Since we deal with local operators, the finite element matrices Gj,j have
only O(1) nonzero coefficients per column and row, independently of the
level j. Thus, employing (33), the matrix-vector multiplication Gj,j′xj can
be performed in O(2nmax{j,j′}) ∼ max{dimUj , dimUj′} operations, which is
order-optimal.

In view of our Galerkin discretization we also need to deal with the se-
quence of finite element spaces V0 ⊂ V1 ⊂ · · · ⊂ H1

per(Y ) with dimVj ∼ 2nj.

Associated prolongations and restrictions will be denoted by Jj
$ and J$

j (j >
&). Obviously, there holds a to (33) analogous expression for the application
of the system matrix Cj,j′.

4.5. Fast two-factor matrix-vector multiplication

We shall provide a fast two-factor matrix-vector multiplications v̂j =
̂(Cj,j ⊗Gj,j)ûj for matrices and vectors of the form

̂Cj,j ⊗Gj,j =
[
C$2,$′2

⊗G$1,$′1

]
$1+$2,$′1+$′2≤j

, û =
[
û$1,$2

]
$1+$2≤j

. (34)

The matrices G$1,$′1
and C$2,$′2

are defined with respect to the two different
multiresolution sequences {Uj}j≥0 and {Vj}j≥0. This matrix-vector product
can be evaluated in essentially linear complexity O(j32jn) if we apply the
algorithm developed in (21; 22) which is based on the following idea. Notice
that algorithms which employ similar techniques have been developed in
(4; 6; 22; 29; 32).

Let the vector ûj = [û$1,$2]$1+$2≤j be blockwise stored in matrix form,
i.e. û$1,$2 ∈ R|∆"1

|×|∆"2
|, and likewise the output vector v̂j. Then, for the

matrix-vector multiplication (34) we have to compute products of the form

vec(v̂$1,$2) = (C$2,$′2
⊗G$1,$′1

) vec(û$′1,$
′

2
) ⇐⇒ v̂$1,$2 = G$1,$′1

û$′1,$
′

2
C%

$2,$′2
.
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Here, vec(X) denotes the vectorization of the matrix X formed by stacking
the columns of X into a single column vector. We achieve the order optimal
complexity bound O(2max{$1+$2,$′1+$′2}n) if we perform the multiplications in
the following order:

v̂$1,$2 =

{(
G$1,$′1

û$′1,$
′

2

)
C%

$2,$′2
, &1 + &′2 ≤ &′1 + &2,

G$1,$′2

(
û$′1,$

′

2
C%

$2,$′2

)
, &1 + &′2 > &′1 + &2.

In accordance with (33), we further use prolongations and restrictions in
order to ensure that only standard finite element matrices appear:

Algorithm 1: Fast matrix-vector multiplication v̂j = ̂(Cj,j ⊗Gj,j)ûj

Data: Finite Element matrices G$,$, C$,$ (0 ≤ & ≤ j) and input vector
ûj

Result: Sparse tensor matrix-vector product v̂j = ̂(Cj,j ⊗Gj,j)ûj

begin

for 0 ≤ &1 + &2 ≤ j do

initialize ŵ$1,$2 := 0;
for 0 ≤ &′1 + &′2 ≤ j do

if &1 + &′2 ≤ &′1 + &2 then

if &1 ≤ &′1 then y := I$1$′1
G$′1,$

′

1
û$′1,$

′

2
; else

y := G$1,$1I
$1
$′1
û$′1,$

′

2
;

if &2 ≤ &′2 then z := J$2
$′2
C$′2,$

′

2
y%; else

z := C$2,$2J
$2
$′2
y%;

update v̂$1,$2 := v̂$1,$2 + z%;
else

if &1 ≤ &′1 then y := J$2
$′2
C$′2,$

′

2
û%
$′1,$

′

2
; else

y := C$2,$2J
$2
$′2
û%
$′1,$

′

2
;

if &2 ≤ &′2 then z := I$1$′1
G$′1,$

′

1
y%; else

z := G$1,$1I
$1
$′1
y%;

update v̂$1,$2 := v̂$1,$2 + z;

In case of the matrix-vector product vi
j = ( ̂bi

j ⊗ Fi
j,j)ûj with

̂bi
j ⊗ Fi

j,j =
[
b$2 ⊗ Fi

j,$1

]
$1+$2≤j

, ûj =
[
û$1,$2

]
$1+$2≤j

, i = 1, 2, . . . , n.
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we proceed in a similar way. One finds

vi
j =

∑

$1+$2≤j

Fi
j,$1û$1,$2(b

i
$2)

% = Fi
j,j

[
j∑

$1=0

Ij$1

(
j−$1∑

$2=0

û$1,$2(b
i
$2)

%

)]
,

i = 1, 2, . . . , n.

Since the inner sum’s complexity is bounded by
∑j−$1

$2=0O(2($1+$2)n) = O(2jn),
only O(j2jn) operations are required to evaluate this expression if one uses
the following algorithm:

Algorithm 2: Fast matrix-vector multiplication vi
j = ( ̂bi

j ⊗ Fi
j,j)ûj

Data: finite element matrices Fi
j,j, b

i
$ (0 ≤ & ≤ j) and input vector ûj

Result: matrix-vector product vi
j = ( ̂bi

j ⊗ Fi
j,j)ûj

begin

for 0 ≤ &1 ≤ j do

if &1 = 0 then w$1 := 0; else w$1 := I$1$1−1w$1−1;
for 0 ≤ &2 ≤ j − &1 do update w$1 := w$1 + û$1,$2(b

i
$2)

%;

ui
j := Fi

j,jwj ;

Finally, the adjoint matrix-vector product v̂i
j = ( ̂bi

j ⊗ Fi
j,j)

%uj is com-
puted blockwise:

v̂i
$1,$2 = (Fi

j,$1)
%ujb

i
$2 =

(
Ij$1(F

i
j,j)

%uj

)
bi
$2 , i = 1, 2, . . . , n.

We shall first compute the bracket, i.e., the vectors

wj := (Fi
j,j)

%uj , w$1 := I$1$1+1w$1+1, &1 = j − 1, j − 2, . . . , 0.

This requires
∑j

$=0O(2$n) = O(2jn) operations. Next, we compute

v̂i
$1,$2 := w$1b

i
$2, 0 ≤ &1 + &2 ≤ j,

which gives additional
∑

$1+$2≤j O(2($1+$2)n) = O(j2jn) operations. In sum-
mary, we arrive at

Algorithm 3: Fast matrix-vector multiplication v̂i
j = ( ̂bi

j ⊗ Fi
j,j)

%uj

Data: finite element matrices Fi
j,j, b

i
$ (0 ≤ & ≤ j) and input vector uj

Result: matrix-vector product v̂i
j = ( ̂bi

j ⊗ Fi
j,j)

%uj

begin

for j ≥ &1 ≥ 0 do

if &1 = j then wj := (Fi
j,j)

%uj; else w$1 := I$1$1+1w$1+1;
for 0 ≤ &2 ≤ j − &1 do v̂i

$1,$2 := w$1b
i
$2 ;
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We can now combine Algorithms 1–3 to define the efficient matrix-vector
multiplication in the conjugate gradient method. Concerning the complexity
we conclude essentially linear over-all complexity.

Proposition 4.4. By using the Algorithms 1–3 the application of the sys-
tem matrix from (31) to a vector (u0,j , û1,j) is of essentially linear complex-
ity. Precisely, only O(j32jn) operations are necessary to multiply a vector
(v0,j , v̂1,j) with the system matrix from (31). In the case of K > 2 scales,
the operation count equals O(j2K−12jn) operations if the matrix-vector mul-
tiplication is performed as in (22).

5. Numerical examples

5.1. An analytical example

We implemented the sparse tensor FEM for a model plane two-scale prob-
lem (i.e. n = 2, K = 2). The two hierarchies (1) used in our numerical
experiments were based both on continuous, piecewise linear finite elements
(i.e. d = 2). For testing and demonstrating our implementation we slightly
modify the problem under consideration such that the solution is known an-
alytically. Let D be the unit circle B1(0, 0) and Y the unit square [0, 1]2.
Consider

u0(x) = 1− x2
1 − x2

2, u1(x,y) = x3
1 sin(2πy1) sin(2πy2),

A(x,y) = α(x)β(y) = 1 +
1

2
sin(2πy1) sin(2πy2).

Then, the tuple (u0, u1) ∈ V is the unique solution of the boundary value
problem

b
(
(u0, u1), (v0, v1)

)
=

∫

D

∫

Y

f(x,y)v0(x) + g(x,y)v1(x,y)dydx,

where

f(x,y) = 4 + 2 sin(2πy1) sin(2πy2),

g(x,y) = 4π
{
x1 cos(2πy1) sin(2πy2) + x2 sin(2πy1) cos(2πy2)

}

+ 2π2x3
1

{(
4 + 2 sin(2πy1) sin(2πy2)

)
sin(2πy1) sin(2πy2)

− cos2(2πy1) sin
2(2πy2)− sin2(2πy1) cos

2(2πy2)
}
.

We emphasize that the only difference to the two-scale homogenization prob-
lem (15) consists in the modified right hand side.
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The coarse grid triangulation (i.e. level 0) of the unit square Y consists
of 18 equal sized triangles. From this the triangulations of the higher levels
are successively obtained by uniform mesh refinement of each triangle into
four triangles (see Subsection 3.1). Thus, on Y we can use standard finite
elements. The number of nodes per level can be found in the second column
of Table 1.

level number of unknowns energy energy

on D on Y in Ŵj error of u0,j error of û1,j

1 41 36 954 4.1 · 10−1 (—) 8.0 · 10−1 (—)
2 145 144 5607 2.1 · 10−1 (2.0) 3.8 · 10−1 (2.1)
3 545 576 29124 1.8 · 10−1 (1.1) 2.1 · 10−1 (1.8)
4 2304 2304 142209 8.6 · 10−2 (2.1) 1.1 · 10−1 (1.9)
5 8321 9216 669438 4.3 · 10−2 (2.0) 5.7 · 10−2 (1.9)
6 33025 36864 3.1 Mio 2.2 · 10−2 (2.0) 2.9 · 10−2 (2.0)
7 131585 147456 14 Mio 1.1 · 10−2 (2.0) 1.5 · 10−2 (2.0)
8 525313 589824 62 Mio 4.9 · 10−3 (2.2) 7.4 · 10−2 (2.0)

Table 1: Approximation errors with respect to the analytical example.

Whereas, the unit circle D is represented exactly by 16 curved patches.
The triangulations on higher levels and the associated finite elements are
constructed in accordance with Subsection 3.2. The resulting mesh on level
3 is shown in Figure 3. The number of nodes per level can be found in the
third column of Table 1, the fourth column contains the number of ansatz
functions in the sparse grid space Ŵj.

In our implementation we employ a polygonal approximation of the curved
triangles on the finest grid to compute all appearing fine grid integrals. Inte-
grals on the coarser grids are successively computed via restriction from the
fine grid components. This ensures optimal computational complexity of the
assembly procedure while preserving consistency.

For the given right hand side we computed the numerical solution for the
levels 1, 2, . . . , 8 and compared it with the analytical solution. The related
energy errors ε0,j := ‖u0 − u0,j‖H1(D) and ε1,j := ‖u1 − û1,j‖L2(D)⊗H1(Y ) are

level 1 2 3 4 5 6 7 8
number of iterations 30 33 39 43 46 48 47 47
over-all cpu-time 0 s 1 s 3 s 24 s 181 s 1260 s 2.4 h 17 h

Table 2: Performance with respect to the analytical example.
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Figure 3: The macroscopic domain D (left) and the unit-cell Y (right) in case of the
perforated domain Dε.

tabulated in the fifth and sixth column of Table 1. The bracketed values
contain the ratio of the old and the new error. As one figures out this ratio
tends to 2.0 which corresponds essentially linear convergence as predicted in
Theorem 4.2.

The number of iterations consumed by the conjugate gradient method
can be found in Table 2. The number stays bounded as mentioned in Sub-
section 4.3. Especially the log-factor in the condition number seems to be
quite harmless.

The computing times are also tabulated in Table 2. The scaling exhibits
still strong logarithmical factors but it is much better than in case quadratic
of complexity. In particular, we emphasize that the 62 million unknowns of
the sparse grid space on level 8 correspond to more than 300 000 million
unknowns of the full tensor product space. The computation on level 8
requires 4.8 Gigabyte memory and 17 hours computing time.

5.2. Homogenization problem with oscillating coefficient

We shall next be concerned with a homogenization problem with oscillat-
ing coefficients and choose as before D as the unit circle B1(0, 0) and Y the
unit square [0, 1]2. We consider the coefficient

A(x,y) = α(x)β(y) = (1 + x2
1 + x2

2)

(
1 +

3

4
cos(2πy1)

)(
1 +

3

4
cos(2πy2)

)

and the right hand side f(x) = 4. Since the domains D and Y and thus the
number of unknowns are the same as in the previous example, the computa-
tional performance is nearly the same as in Table 1.
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Figure 4: The approximate homogenized solution u0,j in case of an oscillating coefficient.
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Figure 5: The approximate two-scale solution u0,j + εû1,j

(
·, ·

ε

)
for ε = 0.1.
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The approximate solution u0,j on the discretization level j = 4 is de-
picted in Figure 4. The associated approximate two-scale solution u0,j(x) +
εû1,j(x,x/ε) is plotted in Figure 5 for the choice ε = 0.1. However, according
to (23), convergence of the two-scale solution might only be ensured in terms
of the estimate

∥∥∇xu
ε −∇xu0,j − wε

j(x)
∥∥
L2(D)

= O(
√
ε+ jhj)

where the quantity vεj is derived via a post-processing by applying the “fold-
ing” operator:

wε
j(x) =

∫

Y

∇yû1,j

(
ε

⌊
x

ε

⌋
+ εz,

x

ε
−
⌊
x

ε

⌋)
dz, x ∈ D.

Herein, 7x/ε8 denotes the “integer” part of x/ε with respect to Y .

5.3. A homogenization problem in a perforated domain

We now consider the situation that Y ⊂ [0, 1]n with strict inclusion. Then
the sets Γint, ∂Y \∂([0, 1]n) and Γε

int := ∂Dε\∂D are nonempty. We refer to
Figure 1 where we depict a perforated circle with circular perforations of size
ε. For such situations, the problem formulation requires the imposition of
boundary conditions on Γε

int. On Γε
int we impose, following (12; 13), Robin

boundary conditions on Γint, i.e.,

n · A∇u+ hεuε = εgε on Γε
int

with h ≥ 0 being a non-negative real constant. As is shown in (12; 13), the
two-scale convergence approach is also applicable in this case (albeit under
the provision of a uniform with respect to ε in H1(Dε) Poincaré inequality).

We therefore choose again the unit circle B1(0, 0) as macroscopic do-
main D and the unit cell is defined as a square with hole: Y := [0, 1]2 \
B3/8(0.5, 0.5). The unit cell is parametrized via 16 curved patches. The
resulting mesh on level 3 is depicted on the right hand side of Figure 3.
The further setting is A(x,y) = 1, f(x) = 4, h = 0 and g(x) = 0. The
approximate homogenized solution u0,j on level j = 4 is depicted in Figure 6.

In Table 3 we tabulated the number of nodes per level as well as the
number of ansatz functions in the sparse grid space Ŵj . The required number
of iterations of the conjugate gradient method are found in the fifth column
of Table 3, the cpu-times are found in the sixth column. The performance is
quite similar to that of the previous examples.

25



!1

!0.5

0

0.5

1

!1

!0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6: The approximate homogenized solution u0,j in case of a perforated circle.

level number of unknowns number of over-all

on D on Y in Ŵj iterations cpu-time
1 41 47 1313 22 0 s
2 145 175 7400 32 1 s
3 545 671 37198 38 4 s
4 2113 2623 177267 44 32 s
5 8321 10367 819735 47 230 s
6 33025 41215 3.7 Mio 50 1627 s
7 131585 164351 17 Mio 52 3.6 h

Table 3: Computational performance associated with the perforated circle.

6. Concluding remarks

We remark in closing that, in the present paper, we have shown the con-
struction of sparse tensor product FE discretizations of anisotropic, elliptic
one-scale limiting problems resulting from reiterated homogenization of el-
liptic multiscale problems with any finite number K ≥ 2 of separated scales.
The proposed construction achieves, up to logarithmic terms, optimal con-
vergence rates whenever a standard FE (one-scale) basis and a multilevel
preconditioner of BPX type is available. The explicit construction of wavelet
Finite Elements is not required in the present approach. Numerical examples
and implementations were detailed for (finite superpositions of) separable
conductivities. We hasten to add, however, that the algorithms presented
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here are also applicable to the general, nonseparable setting, if suitable nu-
merical quadratures (which will necessarily be of sparse tensor type) are
employed. Their numerical analysis and implementation, however, exceed
the format of the present paper and will be considered elsewhere.
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