
!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
!

!
!
! Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Low-Rank tensor Krylov subspace methods for
parametrized linear systems

Kressner and C. Tobler

Research Report No. 2010-16
June 2010

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

Low-Rank Tensor Krylov Subspace Methods for Parametrized
Linear Systems∗

Daniel Kressner1 Christine Tobler1

June 16, 2010

Abstract

We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters
α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of
the parameter space would require a computational effort growing exponentially in the
number of parameters. We show that this curse of dimensionality can be avoided for
sufficiently smooth parameter dependencies. For this purpose, computational methods
are developed that benefit from the fact that x(α) can be well approximated by a tensor
of low rank. In particular, low-rank tensor variants of short-recurrence Krylov subspace
methods are presented. Numerical experiments for deterministic PDEs with parametrized
coefficients and stochastic elliptic PDEs demonstrate the effectiveness of our approach.

1 Introduction

Consider a parameter-dependent linear system

A(α)x(α) = b(α), A(·) : Ω → Rn×n, b(·) : Ω → Rn, (1)

on a compact parameter set Θ ⊂ Rp. It is assumed that A(α) is invertible for every α =(
α(1), . . . ,α(p)

)
∈ Ω. This paper is concerned with numerical methods for solving (1) for a

large number of parameter samples. We have mainly two scenarios in mind. One goal of such
a computation could be to gather statistics about the solutions over the range of parameters.
Another goal could be to interpolate sampled solutions for rapidly solving (1) with respect to
a parameter configuration that is not known a priori, similar to the reduced basis method.

The computational cost of any standard numerical solver applied to (1) individually for
each parameter sample α ∈ Ω inevitably grows proportionally with the number of parameter
samples. Already in the one-parameter case (p = 1) this may not always be desirable, espe-
cially if n is large. As the number of parameters increases, a straightforward discretization of
the parameter set would imply an exponentially growing cost, rendering such a naive approach
quickly infeasible. In this paper, we combine existing short-recurrence Krylov subspace meth-
ods for linear systems with low-rank tensor approximation to achieve a computational cost
that is significantly lower and allows the treatment of many parameters.

1Seminar for Applied Mathematics, D-MATH, ETH Zurich, Raemistr. 101, CH-8092 Zurich.
{kressner,ctobler}@math.ethz.ch

∗Supported by the SNF research module Preconditioned methods for large-scale model reduction within the
SNF ProDoc Efficient Numerical Methods for Partial Differential Equations.

1

Existing approaches In the following, we briefly summarize existing approaches for solving
parameter-dependent linear systems of the form (1).

Classical linear algebra methods are applicable when A depends linearly on a single pa-
rameter, i.e., A(α1) = A0 + α1I or A(α1) = A0 + α1A1. Direct methods based on the
(generalized) Schur decomposition [11] have been applied to the computation of pseudospec-
tra [34, 36]. Iterative methods exploit the fact that Krylov subspaces are invariant under
shifts [9, 10]. These approaches can be easily extended to polynomial dependence on a single
parameter by means of (exact) linearization, see [12, 15, 31]. More recently, recycling has
been proposed as a means to speed up Krylov subspace methods for linear systems smoothly
depending on a single parameter, see, e.g., [5, 20, 27]. While recycling reduces the computa-
tional effort, sometimes considerably, it still results in a cost that grows proportionally with
the number of parameter samples.

A different class of linear algebra methods applicable for linear dependence on a single
parameter is based on reformulating the linear systems (1) into a (generalized) Sylvester
matrix equation. This point of view admits the application of existing low-rank methods
for solving matrix equations, as demonstrated in [30] for the so called extended Krylov sub-
space method, see also Section 2. An extension of such Krylov subspace methods to sev-
eral parameters is described in [22] under the condition that the coefficients A1, . . . , Ap in
A(α) = A0 + α1A1 + · · ·+ αpAp are (or can be transformed to) identities.

In applications with smooth parameter dependence, one can often avoid the use of a pa-
rameter sample size that grows exponentially with p. Sparse grid techniques lead to nearly
linear growth and have been successfully used in collocation methods for stochastic PDEs [25].
While considerably simple to implement, these techniques rely on smooth parameter depen-
dence. Smoothness is helpful but not necessary for the success of the tensor-based methods
presented in this paper. In contrast to sparse grids, tensor-based methods require a very
regular, tensor grid parameter sampling and resolve the curse of dimensionality at a later
stage. In principle, our methods could be combined with sparse grids that can be written as
a sum of tensor grids.

Low-rank tensor methods for solving parametrized linear systems have been proposed
by Khoromskij and Schwab [19] as well as Ballani and Grasedyck [1]. Both methods bear
similarities with the methods proposed in this paper and we will point out connections in the
course of this paper.

Outline The rest of this paper is organized as follows. We first discuss the one-parameter
case in some detail in Section 2. This mainly serves as an illustration for the algorithmic
ideas intended for the multi-parameter case discussed in Section 3. Note, however, that some
of the theoretical results are particular to the one-parameter case and do not admit a direct
extension to more than one parameter. In Sections 4 and 5, we discuss numerical results for
two typical applications of (1): linear elliptic PDEs with parametrized coefficients and linear
PDEs with stochastic coefficients, respectively. Finally, Section 6 illustrates the application
of a non-symmetric solver to a parametrized convection-diffusion equation.

2

2 One parameter

To illustrate the main ideas of this paper, we first consider linear systems depending on one
parameter α ∈ [αmin,αmax]:

A(α)x(α) = b(α), A : [αmin,αmax] → Rn×n, x, b : [αmin,αmax] → Rn. (2)

After choosing parameter samples αmin = α1 < · · · < αm = αmax, we define the matrices

B = [b(α1), . . . , b(αm)], X = [x1, . . . , xm] ∈ Rn×m (3)

containing the right-hand sides and solutions of A(αi)xi = b(αi), respectively.

Example 2.1. Of particular interest is the case of linear dependence: A(α) = A0 + αA1,
where b(α) ≡ b is constant. The corresponding linear systems (A1 + αiA2)xi = b can be
collected into an mn×mn system

(
I ⊗A0 +D1 ⊗A1

)
x = I ⊗ b, (4)

where D1 = diag(α1, . . . ,αm). Alternatively, (4) can be written as

A0X +A1XD1 = b
[
1, . . . , 1

]
, (5)

which amounts to a Sylvester matrix equation. Low-rank matrix methods for solving such
linear matrix equations have been actively developed in the last two decades; we refer to [30]
for the application of such a method to (5).

2.1 Singular value decay of X

In the following, we use standard arguments to show that the singular values of the matrix
X in (3) decay exponentially if the entries of both A and b depend analytically on α. We
first verify this for the matrix B containing the sampled right-hand sides. Without loss of
generality, we may assume that α is in the interval [−1, 1]. In the following, Eρ ⊂ C denotes
the open elliptic disc with foci ±1 and the sum of the half axes equal to ρ.

Lemma 2.2. Consider a vector valued function b : [−1, 1] → Rn with entries having an
analytic extension to Eρ0 for some ρ0 > 1. Then there exists an approximation

b̂(α) =
k−1∑

j=0

pj(α)vj , (6)

with constant vectors vj ∈ Rn and polynomials pj : [−1, 1] → R, such that

max
α∈[−1,1]

‖b(α)− b̂(α)‖ ≤ 2

ρ− 1
max
ω∈∂Eρ

‖b(ω)‖ρ−k.

for any 1 < ρ < ρ0 and any vector norm ‖ · ‖.

3

Proof. This proof is a straightforward extension of the classical one for functions [23, p. 77].
As b is analytic, we can expand its entries as a Chebyshev series

b(α) =
1

2
v0 +

∞∑

j=1

pj(α)vj , pj(α) = cos(j arccosα), vj = π−1
∫ π

−π
b(cos(t)) cos(jt)dt.

Formally setting p0 ≡ 1/2, the truncated expansion b̂(α) =
∑k−1

j=0 pj(α)vj satisfies

max
α

‖b(α)− b̂(α)‖ ≤ max
α

∥∥∥
∞∑

j=k

pj(α)vj
∥∥∥ ≤

∞∑

j=k

‖vj‖. (7)

To determine an upper bound on ‖vj‖ we substitute z = eit and set g(z) = b(z+z−1

2), resulting
in

vj =
1

2πi

∮

|z|=1
g(z)(zj−1 + z−j−1)dt,

Since b is analytic on Eρ, g is analytic in the annulus with radii 1/ρ, ρ. Hence, by changing
the path of integration, we obtain

vj =
1

2πi

∮

|z|=ρ−1
g(z)zj−1dt+

1

2πi

∮

|z|=ρ
g(z)z−j−1dt.

This shows

‖vj‖ ≤ 1

2π

∮

|z|=ρ−1
‖g(z)‖|zj−1|dt+ 1

2π

∮

|z|=ρ
‖g(z)‖|z−j−1|dt

=
1

2π
ρ−j+12πρ−1 max

|z|=ρ−1
‖g(z)‖+ 1

2π
ρ−j−12πρmax

|z|=ρ
‖g(z)‖

= 2 max
ω∈∂Eρ

‖b(ω)‖ρ−j ,

which – combined with (7) – completes the proof.

Corollary 2.3. Under the assumptions of Lemma 2.2, consider the matrix

B = [b(α1), b(α2), · · · , b(αm)], α1, . . . ,αm ∈ [−1, 1].

Then the kth singular value σk(B) of B satisfies

σk(B) ≤ 2
√
m

1− ρ−1
max
ω∈∂Eρ

‖b(ω)‖2ρ−k. (8)

Proof. Set B̂ = [b̂(α1), . . . , b̂(αm)] with b̂ defined in Lemma 2.2. Then the form (6) of b̂ implies
that B̂ is a matrix of rank at most k − 1:

B̂ = [v0, v1, . . . , vk−2] ·




p0(α1) · · · p0(αm)

...
...

pk−2(α1) · · · pk−2(αm)



 .

4

Moreover, the error bound of Lemma 2.2 reveals

‖B − B̂‖2F ≤
m∑

i=1

‖b(αi)− b̂(αi)‖22 ≤ m ·
(2

ρ− 1
max
ω∈∂Eρ

‖b(ω)‖2ρ−(k−1)
)2

.

This completes the proof by the well-known fact that the error of the best rank k− 1 approx-
imation in the Frobenius norm is given by

√
σk(B)2 + · · ·+ σ2

m(B) ≥ σk(B).

Theorem 2.4. Let b : [−1, 1] → Rn and A : [−1, 1] → Rn×n both have analytic extensions to
Eρ0 for some ρ0 > 1. Moreover, the matrix A(α) is assumed to be invertible for all α ∈ Eρ0.
Consider

X = [x(α1), x(α2), · · · , x(αm)], α1, . . . ,αm ∈ [−1, 1],

where each x(αi) is the solution of the linear system A(αi)x(αi) = b(αi). Then the kth
singular value σk(X) of X satisfies

σk(X) ≤ 2
√
m

1− ρ−1
max
ω∈∂Eρ

‖A−1(ω)‖2 max
ω∈∂Eρ

‖b(ω)‖2ρ−k,

for any 1 < ρ < ρ0.

Proof. The entries of A(α)−1 are analytic on Eρ as they can be written as polynomials in
the entries of A(α). Hence, x(α) = A(α)−1b(α) is also analytic on Eρ. The statement of the
theorem is proven by applying Corollary 2.3 to x(α) and using the estimate

max
ω∈∂Eρ

‖x(ω)‖ ≤ max
ω∈∂Eρ

‖A−1(ω)‖ ‖b(ω)‖ ≤ max
ω∈∂Eρ

‖A−1(ω)‖ max
ω∈∂Eρ

‖b(ω)‖.

Theorem 2.4 shows that the singular values of the solution matrix X decay exponentially.
The strength of this decay depends on the domain of analyticity of A(·) and b(·). (For entire
functions, the decay will be superexponential.) Hence, we can expect that X can be well
approximated by a matrix of very low rank. In the following, we will develop algorithms that
benefit from this property.

2.2 Algorithms

We consider the linear systems A(αi)xi = b(αi) for i = 1, . . . ,m. It will be convenient to
combine these systems into one large linear system

Ax =




A(α1)

. . .

A(αm)



x =




b(α1)

...
b(αm)



 . (9)

This can be interpreted as a linear matrix equation A(X) = B for the matrix X ∈ Rn×m with
x = vec(X), where we define A(X) as the linear operator satisfying vec(A(X)) = Avec(X).

The operator A(·) should be in a form that allows for the economic application to low
rank matrices. This is the case, for example, if A(α) has the form1

A(α) =
q∑

j=1

fj(α)Aj , (10)

1Any analytic A(α) can be approximately written as (10) by polynomial expansion and truncation.

5

with a small number of terms q. Assuming a low rank decomposition of Y = UV T with
U ∈ Rn×k, V ∈ Rm×k, this implies a low rank decomposition for A(Y):

A(UV T) =
q∑

j=1

(AjU)(V T fj(D)) = [A1U, . . . , AqU][f1(D)V, . . . , fq(D)V]T ,

and therefore significantly reduces the computational cost if k, q - n.
To derive efficient algorithms for computing low rank approximations to X, we combine

existing iterative methods for solving linear systems with low rank truncation. In the follow-
ing, we consider three iterative methods: preconditioned Richardson, preconditioned CG, and
preconditioned BiCGstab.

2.2.1 Preconditioned Richardson method

Formally, we apply the preconditioned Richardson method to the block diagonal linear system
(9), but rephrase all vectors in Rnm as matrices in Rn×m, leading to matrix iterates Xk ∈
Rn×m. To exploit the singular value decay of B and X shown in Section 2.1, we represent
Xk by a low-rank approximation Xk ≈ UkV T

k , and similarly the residuals Rk. All operations
of the algorithm can be applied efficiently to matrices in such a low-rank format. In terms
of matrices, the preconditioner is a linear operator M : Rn×m → Rn×m, which should have a
structure that allows M−1 to benefit from low-rank matrices as well. For example, we could
choose M = I ⊗ M , corresponding to the use of the same preconditioner M for all linear
systems A(αi)xi = b(αi).

As the rank will rapidly grow in the course of the iteration, the iterates Xk should be
truncated in every iteration. Algorithm 1 describes the final algorithm.

Algorithm 1 Preconditioned Richardson method
Input: Matrix functions A,M : Rn×m → Rn×m, right-hand side B ∈ Rn×m in low-rank format.

Parameter ω > 0, truncation operator T w.r.t. relative accuracy εrel.
Output: Matrix X ∈ Rn×m fulfilling ‖A(X)−B‖F ≤ tol.

X0 = 0, R0 = B
while ‖A(Xk)−B‖F > tol do

X ′
k+1 = Xk + ωM−1(Rk), Xk+1 = T (X ′

k+1)
Rk+1 = B −A(Xk+1)
k = k + 1

end while
X = Xk

In the following, we discuss various aspects of Algorithm 1.

Low-rank truncation The truncation operator Y = T (Y ′) compresses a matrix Y ′ = UV T

in low-rank format with U ∈ Rn×k, V ∈ Rm×k such that ‖Y − Y ′‖F ≤ εrel‖Y ′‖F . For this
purpose, QR factorizations U = QURU , V = QV RV with upper triangular RU , RV ∈ Rk×k

are computed. Then a singular value decomposition2

RUR
T
V = Ǔ diag(σ1, . . . ,σk) V̌

T

2Optionally, a product singular value decomposition [8] may be computed, potentially allowing for higher
precision if εrel is tiny.

6

is computed. The truncation rank k̃ ≤ k is the smallest integer such that

√
σ2
k̃+1

+ · · ·+ σ2
k ≤ εrel

√
σ2
1 + · · ·+ σ2

k. (11)

Then, using Matlab notation, we set Ũ = UǓ(:, 1 : k̃) and Ṽ = V V̌ (:, 1 : k̃)diag(σ1, . . . ,σk̃)

and obtain the compressed low-rank matrix Y = Ũ Ṽ T . Instead of (11), one could also use an
absolute criterion to determine which singular values to truncate. This would be appropriate
if we were to compress the residuals Rk in Algorithm 1.

Choice of ω and M The choice of the parameter ω strongly influences the convergence of
the Richardson method. For symmetric positive definite A and M, it is well known [28] that
the best convergence rate is achieved by

ω =
2

λmin(M−1A) + λmax(M−1A)
.

If M = I ⊗M then

λmin(M−1A) = min
i=1,...,m

λmin
(
M−1A(αi)

)
, λmax(M−1A) = max

i=1,...,m
λmax

(
M−1A(αi)

)
.

In general, it is hard to find a matrix M that is optimal in the sense that it minimizes
κ
(
M−1A(α)

)
uniformly for all α ∈ [αmin,αmax]. Only in the special case of linear parameter

dependence A(α) = A0 + αA1, it is straightforward to show that among all preconditioners
of the form M = A(α̃) = A0 + α̃A1, the choice

α̃ =
1− κ̃

λmax(A
−1
0 A1)− κ̃λmin(A

−1
0 A1)

is optimal, where

κ̃ =
√
κ1 · κ2, κ1 =

1 + α1λmax

1 + α1λmin
, κ2 =

1 + α2λmax

1 + α2λmin
.

Convergence In the absence of low-rank truncation, the error of the Richardson method
satisfies

‖Xk −X‖F ≤ Cγk‖B‖F ,

for any γ larger than the spectral radius of I−ωM−1A and some constant C > 0. Truncations
introduce nonlinear perturbations and henceforth affect the convergence of the Richardson
method. Such perturbed fixed point iterations have been analysed, e.g., in [24, 32]. For
general A and M, this analysis is hard to turn into practical insights due to the particular
choice of norms necessary to deal with the effects of non-normality.

If A is symmetric positive definite then the induced norm ‖Y ‖A := trace(XTA(X)) yields

‖X −Xk‖A ≤ ‖X −X ′
k+1‖A + ‖Xk+1 −X ′

k+1‖A
≤ ‖X −X ′

k+1‖A + ‖Xk+1 −X ′
k+1‖A

≤ γ‖X −Xk‖A + εrel
√
‖A‖2‖X ′

k+1‖F

7

with γ = ‖I − ωAM−1‖2. Hence, convergence progresses as long as

εrel <
(1− γ)‖X −Xk‖A√

‖A‖2‖X ′
k+1‖F

≈ (1− γ)‖X −Xk‖A√
‖A‖2‖X‖F

.

While this bound is difficult to check in practice, it at least allows for the conclusion that εrel
needs to be kept roughly proportional to the current residual norm to retain convergence.

2.2.2 Preconditioned CG method

Similarly to the Richardson method, we apply the preconditioned CG method to the block
diagonal linear system (9). Using low-rank truncations of the iterates Xk, Pk results in Algo-
rithm 2. Optionally, the iterates Rk and Qk can also be truncated. It is important to note that
we have replaced the standard residual recursion formula Rk+1 = Rk−ωkA(Pk) by the explicit
formula Rk+1 = B − A(Xk), because otherwise we observed the method to stagnate much
earlier due to truncation error. This replacement also forces the use of non-standard formulas
for the coefficients ωk and βk, whose derivation does not assume the residual recursion.

Low-rank computation of inner products Algorithm 2 requires the computation of the
matrix inner product

〈Y, Z〉 = vec(Y)T vec(Z) = trace(Y TZ)

for two low-rank matrices Y = UY V T
Y , Z = UZV T

Z with UY ∈ Rn×kY , VY ∈ Rm×kY , UZ ∈
Rn×kZ , VZ ∈ Rm×kZ . Trivially,

trace(Y TZ) = trace(VY U
T
Y UZV

T
Z) = trace

(
(V T

Z VY)(U
T
Y UZ)

)
,

and hence we first compute V T
Z VY ∈ RkZ×kY (2mkY kZ flops), UT

Y UZ ∈ RkY ×kZ (2nkY kZ
flops), and then the diagonal elements of the product of these two matrices (2kY kZ flops). In
total we require 2(m+ n+ 1)kY kZ flops.

Convergence In the absence of truncation error, the convergence of Algorithm 2 can be
estimated from the classical bounds:

‖X −Xk‖A ≤ 2ck

1 + c2k
‖X −X0‖A, c =

√
κ(A)− 1√
κ(A) + 1

< 1,

where ‖Y ‖A :=
√
〈Y,A(Y)〉. Not displayed by this bound, a merit of the CG method is

the occurrence of superlinear convergence effects [35]. Unfortunately, the eigenvalues of the
block diagonal matrix A tend to fill up intervals as the samples fill up [αmin,αmax]. In such
a situation, superlinear convergence effect can be expected to disappear.

Finally, note that Algorithm 2 without low-rank truncations coincides for A(α) ≡ A with
a so called global Krylov subspace method [17].

2.2.3 Preconditioned BiCGstab method

For the case of non-symmetric linear systems, we employ the BiCGstab method as described
in [2, Sec. 2.3.8]. Similarly to the Richardson and CG methods, applying preconditioned
BiCGstab to the block diagonal system (9) results in Algorithm 3.

As in the case of the CG method, we have experimented with replacing the standard
residual recursion formula Rk+1 = Sk − ξkTk (Variant 1) by the explicit formula Rk+1 =
B −A(Xk+1) (Variant 2), aiming at preventing early stagnation of the residual.

8

Algorithm 2 Preconditioned CG method
Input: Matrix functions A,M : Rn×m → Rn×m, right-hand side B ∈ Rn×m in low-rank format.

Truncation operator T w.r.t. relative accuracy εrel.
Output: Matrix X ∈ Rn×m fulfilling ‖A(X)−B‖F ≤ tol.

X0 = 0, R0 = B, Z0 = M−1(R0), P0 = Z0, Q0 = A(P0)
ξ0 = 〈P0, Q0〉, k = 0
while ‖Rk‖F > tol do

ωk = 〈Rk, Pk〉/ξk
Xk+1 = Xk + ωkPk, Xk+1 ← T (Xk+1)
Rk+1 = B −A(Xk+1), Optionally: Rk+1 ← T (Rk+1)
Zk+1 = M−1(Rk+1)
βk = −〈Zk+1, Qk〉/ξk
Pk+1 = Zk+1 + βkPk, Pk+1 ← T (Pk+1)
Qk+1 = A(Pk+1), Optionally: Qk+1 ← T (Qk+1)
ξk+1 = 〈Pk+1, Qk+1〉
k = k + 1

end while
X = Xk

Algorithm 3 Preconditioned BiCGstab method
Input: Matrix functions A,M : Rn×m → Rn×m, right-hand side B ∈ Rn×m in low-rank format,

R̃ ∈ Rn×m in low-rank format (e.g., R̃ = B). Truncation operator T w.r.t. relative accuracy εrel.
Output: Matrix X ∈ Rn×m fulfilling ‖A(X)−B‖F ≤ tol.

X0 = 0, R0 = B, ρ0 = 〈R̃, R0〉, P0 = R0, P̂0 = M−1(P0), V0 = A(P̂0), k = 0
while ‖Rk‖F > tol do

ωk = 〈R̃, Rk〉/〈R̃, Vk〉
Sk = Rk − ωkVk, Optionally: Sk ← T (Sk)
Ŝk = M−1(Sk), Optionally: Ŝk ← T (Ŝk)
Tk = A(Ŝk), Optionally: Tk ← T (Tk)
if ‖Sk‖F ≤ tol then X = Xk + ωkP̂k, return, end if
ξk = 〈Tk, Sk〉/〈Tk, Tk〉
Xk+1 = Xk + ωkP̂k + ξkŜk, Xk+1 ← T (Xk+1)
Variant 1: Rk+1 = Sk − ξkTk, Rk+1 ← T (Rk+1)
Variant 2: Rk+1 = B −A(Xk+1), Optionally: Rk+1 ← T (Rk+1)
if ‖Rk‖F ≤ tol then X = Xk, return, end if
ρk+1 = 〈R̃, Rk+1〉
βk = ρk+1/ρk ωk/ξk
Pk+1 = Rk+1 + βk(Pk − ξkVk), Pk+1 ← T (Pk+1)
P̂k+1 = M−1(Pk+1), Optionally: P̂k+1 ← T (P̂k+1)
Vk+1 = A(P̂k+1), Optionally: Vk+1 ← T (Vk+1)
k = k + 1

end while

9

0 0.5 1 1.5 2

0

0.5

1

1.5

2

 # Vertices : 455, # Elements : 825,
Edges : 1279

0 20 40 60 80 100

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

si
n

g
u

la
r

va
lu

e

Figure 1: Left: Mesh discretization. Right: Singular value decay of the solution matrix X.

2.3 Numerical Examples

2.3.1 Parametrized stationary heat equation

As an example, we consider the stationary heat equation

−∇(σ(x)∇u) = f in Ω = [−1, 1]2

u = 0 on Γ := ∂Ω.

The heat conductivity coefficient σ(x) is assumed to be piecewise constant:

σ(x) =

{
1 + α for x ∈ D,
1 for x /∈ D,

where D ⊂ Ω is a disc of radius 0.5 and α ∈ [0, 100] is the parameter. This system is discretized
by a finite element formulation with piecewise linear basis functions on the mesh displayed
in Figure 1. The resulting 371 × 371 linear system takes the form (A1 + αA2)x(α) = b. We
choose the preconditioner M = I ⊗M with M = A1 + α̃A2, where α̃ is optimally chosen as
discussed in Section 2.2.1. The source term is assumed to be constant: f ≡ 1.

The set of parameter samples is {α1, . . . ,α101} = {0, . . . , 100}. The singular values of the
resulting solution matrix X are displayed in Figure 1, which confirms the exponential decay
predicted by Theorem 2.4. (Note that singular values smaller than 10−14 are corrupted by
roundoff error.)

Figure 2 displays the residual norm ‖A(X)−B‖F /‖B‖F for the iterates of the precondi-
tioned Richardson and CG methods, respectively. For the Richardson method, the observed
convergence is monotone albeit rather slow. More importantly, turning on low-rank trunca-
tion does not spoil the convergence until the final accuracy determined by εrel is reached. The
convergence of the CG method is significantly faster compared to the Richardson method,
without and with low-rank truncations. Again, truncations do not spoil the convergence until
the final accuracy is reached. We observed no visible difference in the convergence plots when
turning on or turning off the truncations marked optional in Algorithm 2.

10

200 400 600 800 1000 1200 1400

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
si

d
u
a
l

full
eps 1e−8
eps 1e−4

20 40 60 80 100 120 140

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
si

d
u
a
l

full
eps 1e−8
eps 1e−4

Figure 2: Left: Preconditioned Richardson method without (full) and with low-rank trun-
cations (εrel ∈ {10−8, 10−4}). Right: Preconditioned CG method without (full) and with
low-rank truncations (εrel ∈ {10−8, 10−4}).

2.3.2 Parametrized convection-diffusion equation

Let us now consider the stationary convection-diffusion equation

−∇(σ(x)∇u) + cT∇u = f in Ω = [−1, 1]2

u = 0 on Γ := ∂Ω.

We choose c = (2, 0)T , and proceed with the discretization as for the case of the stationary
heat equation (Section 2.3.1).

The singular value decay of the solution matrix X (see Figure 3) is almost as strong
as for the heat equation example above. Figure 3 displays the results from applying the
preconditioned CG method to the normal equations, which exhibits – as expected – rather
slow convergence.

Figure 4 displays results from applying the two variants of the BiCGstab method described
in Algorithm 3. Variant 1 uses formula Rk+1 = Sk + ξkTk, which gets affected by low-
rank truncations. In effect, the norm of Rk becomes much smaller than the actual residual
norm ‖B − A(Xk)‖F /‖B‖F , which stagnates roughly at the level of the truncation error.
Variant 2, which uses the true residual Rk+1 = B −A(Xk+1), converges initially at a similar
rate. However, the convergence behavior becomes more erratic when the final accuracy is
attained. Note that such an erratic behavior was avoided in the CG method by the use of
non-standard recursion formulas. Unfortunately, it is not clear how this idea can be extended
to BiCGstab. Turning on or turning off optional truncations in Algorithm 3 was observed to
have no significant impact on the convergence behavior.

3 Multiple parameters

The basic ideas for the one-parameter case extend in a direct fashion to the multi-parameter
case:

A(α)x(α) = b(α), α ∈ Ω :=
[
α(1)
min,α

(1)
max

]
× · · ·×

[
α(p)
min,α

(p)
max

]
,

where A : Ω → Rn×n, b : Ω → Rn, and A(α) invertible for all α ∈ Ω. We sample each

parameter individually: {α(µ)
1 , . . . ,α(µ)

mµ} ⊂ [α(µ)
min,α

(µ)
max] for µ = 1, . . . , p, resulting in a tensor-

11

0 20 40 60 80 100

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

si
n
g
u
la

r
va

lu
e

1000 2000 3000 4000 5000 6000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
si

d
u

a
l

full
eps 1e−8
eps 1e−4

Figure 3: Left: Singular value decay of the solution matrixX for convection-diffusion example.
Right: Preconditioned CG method applied to normal equations without (full) and with low-
rank truncations (εrel ∈ {10−8, 10−4}).

20 40 60 80 100 120
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
si

d
u

a
l

full
eps 1e−8
eps 1e−4

20 40 60 80 100 120
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

k

re
si

d
u

a
l

full
eps 1e−8
eps 1e−4

Figure 4: Preconditioned BiCGstab method without (full) and with low-rank truncations
(εrel ∈ {10−8, 10−4}). Left: Variant 1. Right: Variant 2.

12

grid sampling of Ω:

αI = (αi1 , . . . ,αip), iµ = 1, . . . ,mµ, µ = 1, . . . , p,

with multi-index I = (i1, . . . , ip). This leads to m1m2 · · ·mp linear systems

A(αI)xI = b(αI), with xI = x(αI) ∈ Rn.

The solutions xi1,...,ip ∈ Rn are assembled in a tensor X ∈ Rn×m1×···×mp or stacked into a
long vector x = vec(X) ∈ Rnm1···mp , and similarly for the right-hand sides b(αI). This leads
to a linear system

Ax = b, (12)

where A is a block diagonal matrix containing the system matrices A(αi1,...,ip) on the diagonal.

Example 3.1. In the case of linear parameter dependence, A(α) = A0+α(1)A1+· · ·+α(p)Ap,
the matrix A takes the form

A = I ⊗ I ⊗ · · ·⊗A0 + I ⊗ · · ·⊗D1 ⊗A1 + · · ·+Dp ⊗ I ⊗ · · ·⊗ I ⊗Ap, (13)

with Dµ = diag(α(µ)
1 , . . . ,α(µ)

mµ).

3.1 Approximation of x by low-rank tensors

The exact solution of the linear system (12) is computationally intractable for more than a few
parameters unless the number of samples per parameter is ridiculously small. To approach
this problem, we will approximate the solution in a low-rank tensor format; the aim of this
section is to provide the theoretical justification for this approximation. We start by showing
that a multivariate analytic vector-valued function can be well approximated by a short sum
of separable functions.

By a suitable transformation, we may assume without loss of generality that the parameter
space is Ω = [−1, 1]p. We first consider a scalar-valued function f : Ω → R, which is expanded
in terms of a Fourier-Legendre series:

f(α) =
∑

J∈Np

cJPJ(α), J = (j1, . . . , jp),

where PJ(α) = Pj1(α1) · · ·Pjp(αp) is a product of Legendre polynomials and

cJ =
(p∏

µ=1

2jµ + 1

2

)∫

[−1,1]p
f(α)PJ(α)dα. (14)

We further define the open elliptic polydisc E×
ρ0 = Eρ0 × · · ·× Eρ0 , where Eρ0 ⊂ C is again the

open elliptic disc with foci ±1 and sum of half axes equal to ρ0.

Lemma 3.2. Consider a function f : [−1, 1]p → R having an analytic extension to the
polydisc E×

ρ0. Then the Fourier-Legendre coefficients cJ defined in (14) satisfy

|cJ| ≤
(p∏

µ=1

2jµ + 1

2

)
(ρ− 1)−p · ρ−

∑p
µ=1 jµ · ‖f‖L1(E×

ρ) =: γJ,

for any 1 ≤ ρ < ρ0.

13

Proof. Our proof follows the proof of Lemma A.3 in [3], which considers a slightly different
setting in the context of deterministic expansions of stochastic PDEs. By repeatedly applying
the Cauchy integral formula in each variable, we find

f(α) =
1

(2πi)p

∫

Γ

f(z)

(z1 − α1) · · · (zp − αp)
dz,

where Γ := ∂Eρ × · · ·× ∂Eρ. Inserting into (14) gives

cJ =
(p∏

µ=1

2jµ + 1

2

) 1

(2πi)p

∫

[−1,1]p

∫

Γ

f(z)PJ(α)

(z1 − α1) · · · (zp − αp)
dz dα

=
(p∏

µ=1

2jµ + 1

2

) 1

(2πi)p

∫

Γ
f(z)

(p∏

µ=1

∫ 1

−1

Pjµ(αµ)

(zµ − αµ)
dαµ

)
dz.

Using the fact that Qjµ(zµ) = 1
2

∫ 1
−1

Pjµ (αµ)

(zµ−αµ)
dαµ is the Legendre polynomial of the second

kind, and setting QJ(z) =
∏p

µ=1Qjµ(zµ), we thus have

cJ =
(p∏

µ=1

2jµ + 1

2

) 1

(πi)p

∫

Γ
f(z)QJ(z)dz.

Using sup
z∈Γ

|QJ(z)| ≤
p∏

µ=1
π ρ−jµ−1

1−ρ−1 , see (A.21) in [3], leads to the bound

|cJ| ≤
(p∏

µ=1

2jµ + 1

2

) 1

πp
max
Γ

|QJ(z)|
∫

Γ
|f(z)|dz ≤

(p∏

µ=1

2jµ + 1

2

) p∏

µ=1

ρ−jµ−1

1− ρ−1
‖f‖L1(Γ),

which completes the proof.

As a next step, we find an upper bound on the best approximation error inf
fk

‖f − fk‖∞ in

the supremum norm on Ω, where fk is any function with only k non-zero coefficients cJ. The
following lemma, attributed to Stechkin in [6], will prove very useful for this purpose.

Lemma 3.3. Consider q, r ∈ R with 0 < q ≤ r < ∞, and the coefficients (cJ)J∈Np ∈ -r(Np).
For k ∈ N, choose Λk ⊂ Np of cardinality k such that |cJ| ≥ |cL| for all J ∈ Λk and L ∈ Np\Λk.
Then (∑

J∈Λ\Λk

|cJ|r
)1/r

≤ k−s‖cJ‖&q , with s =
1

q
− 1

r
≥ 0.

Proof. Construct a rearrangement (γn)n≥1 of |cJ| fulfilling γn ≥ γn+1 for all n. We then have

(∞∑

n=k+1

γrn

)1/r
≤ γ1−q/r

k

(∞∑

n=k+1

γqn

)1/r
≤ γ1−q/r

k ‖γn‖q/r&q . (15)

Using kγqk ≤ ‖γn‖q&q gives ‖γn‖q/r−1
&q = ‖γn‖−sq

&q ≤ k−sγ−sq
k = k−sγ−1+q/r

k , which, combined
with (15), proves the statement.

14

Lemma 3.4. Consider a function f : [−1, 1]p → R as in Lemma 3.2 with the bounds γJ on
its Fourier-Legendre coefficients. Choose Λk ⊂ Np such that {γJ : J ∈ Λk} contains the k
largest γJ. Setting fk(α) =

∑
J∈Λk

cJPJ(α), we have

‖f − fk‖∞ ≤ k−s‖γJ‖&q , with 0 < q ≤ 1, s =
1

q
− 1.

Proof. Using that the supremum norm of Legendre polynomials is 1, we obtain

‖f(α)− fk(α)‖∞ =
∥∥∥

∑

J∈Λ\Λk

cJPJ(α)
∥∥∥
∞

≤
∑

J∈Λ\Λk

|cJ| · ‖PJ(α)‖∞ ≤
∑

J∈Λ\Λk

γJ.

Applying Stechkin’s lemma with r = 1 yields the desired result.

Remark 3.5. Lemma 3.4 implies that the error decays stronger than any polynomial in k.
However, note that the constant ‖γJ‖&q → ∞ as q → 0. A good choice of q ∈ (0, 1] that
balances these factors depending on k appears to be difficult to derive analytically. Inserting
the bound from Lemma 3.2 into the result of Lemma 3.4 leads to

‖f(α)− fk(α)‖∞ ≤ k−s
(1

ρ− 1

)p
‖f‖L1(E×

ρ)

(∑

J∈Np

(p∏

µ=1

2jµ + 1

2
ρ−jµ

)q)1/q

= k−s
(1/2

ρ− 1

)p
‖f‖L1(E×

ρ)

(∞∑

r=0

(2r + 1)qρ−rq
)p/q

= k−s(ρ− 1)−p‖f‖L1(E×
ρ)Φ(ρ

−q,−q, 1/2)p/q,

where Φ denotes the Lerch transcendent.

The tensor rank of a tensor X is defined as the minimal k such that X can be decomposed
as a sum of k rank-one tensors:

X =
k∑

j=1

v(1)j ⊗ · · ·⊗ v(p)j . (16)

This is also called CP decomposition of X . The tensor rank provides an upper bound on
the Tucker ranks and hierarchical ranks discussed in Section 3.2 below. The following lemma
gives a bound on the best approximation error by a tensor of tensor rank k.

Theorem 3.6. Let b : [−1, 1]p → Rn and A : [−1, 1]p → Rn×n, where each element of b, A is
assumed to have an analytic extension to the open polydisc E×

ρ0. Moreover, the matrix A(α)
is assumed to be invertible for all α ∈ E×

ρ0. Consider x(α) = A(α)−1b(α), and the tensor
X ∈ Rn×m1×···×mp defined for I = (i1, . . . ip) by (xI)i0 = xi0(αI), where i0 = 1, . . . , n and
iµ = 1, . . . ,mµ for µ = 1, . . . , p.

Then there is an approximation X (k) of tensor rank k such that, for any choice of s = 1
q−1

with 0 < q ≤ 1,
‖X − X (k)‖∞ ≤ C k−s,

where

C :=
(1/2

ρ− 1

)p
max

i0=1,...,n
‖xi0(α)‖L1(E×

ρ)

(∞∑

r=0

(2r + 1)qρ−rq
)p/q

.

15

Proof. By the same argument used in the proof of Theorem 2.4, the function x : [−1, 1]p → Rn

is analytic in each variable on E×
ρ0 . We apply Lemma 3.4 to xi0(α):

x(k)i0
(α) =

∑

J∈Λk

c(i0)J PJ(α), with ‖xi0(α)− x(k)i0
(α)‖∞ ≤ Ck−s.

Note that the choice of Λk only depends on ρ, which is the same for all i0 = 1, . . . , n, allowing
us to write

X (k)
i0,i1,...,ip

=
∑

J∈Λk

c(i0)J Pj1(α
(1)
i1

) · · ·Pjp(α
(p)
ip

).

By construction, x(k) has tensor rank k or smaller.

An error bound in the Euclidean norm can be easily obtained from Theorem 3.6 using the
inequality

‖X − X (k)‖22 ≤ n ·m1 · · ·mp‖X − X (k)‖2∞.

3.2 Low-rank Tucker decompositions

Applying low-rank methods – as, e.g., in Section 2.2 – to linear systems with more than one
parameter requires a suitable low-rank tensor decomposition. As the storage requirements
for an explicitly stored tensor increase exponentially with its order, such a decomposition
becomes mandatory alone for the storage of the solution tensor. On the other hand, we
must also be able to perform certain operations with this decomposition in a robust and
efficient manner. In the context of the iterative solvers considered in this paper, we require
the following operations.

• Addition of two tensors.

• Truncation to low-rank tensor: Approximate a low-rank tensor by a tensor of even lower
tensor rank. For our purpose, it is important that this truncation can be implemented
as a black box, in particular without parameter tuning. On the other hand, there is no
need to obtain a best or nearly best approximation.

• µ-mode matrix product: The multiplication of a matrix on the µth mode of a tensor is
defined as

(
(A)µX

)

I
:=

nµ∑

l=1

Aiµ,l Xi1,...,iµ−1,l,iµ+1,...,id , A ∈ Rmµ×nµ , X ∈ Rn1×···×nd .

In the case of linear parameter dependence, all matrix-tensor multiplications can be
performed by a combination of µ-mode matrix products and additions.

• Tensor inner product and Euclidean norm: The tensor scalar product is defined as

〈X ,Y〉 = 〈vec(X), vec(Y)〉 =
∑

J≤N

XJYJ, where N = (n1, . . . , nd),

with the induced Euclidean norm ‖X‖2 =
√
〈X ,X 〉.

16

3.2.1 Review of CP and Tucker decomposition

In view of the requirements above, it turns out that classical low-rank tensor formats are not
well suited for our purpose. In the following, we briefly illustrate this for the CP and the
Tucker decompositions.

The CP decomposition is defined in (16) as the decomposition into a sum of rank-one
tensors. Even though its storage requirements are minimal, the decomposition is affected by
mathematical as well as algorithmic difficulties. In particular, the tensor rank is in general
not lower semi-continuous as in the matrix case and the CP decomposition may become ill-
posed. In effect, existing Newton-based methods for low-rank truncation suffer from numerical
instabilities and may get trapped in local minima. See, for example, [21] for a more detailed
discussion. So far, no reliable black box method for truncating CP decompositions, as required
in our algorithms, is known.

The Tucker decomposition for a tensor X ∈ Rn1×···×nd takes the form

vec(X) = (U1 ⊗ · · ·⊗ Ud) vec(C), Uµ ∈ Rnµ×rµ , C ∈ Rr1×···×rd ,

where each matrix Uµ has orthonormal columns. The obvious drawback of this decomposition
is that the storage for the so called core tensor C still grows exponentially with the number
of dimensions. The great benefit, however, is that low-rank truncation can be easily achieved
by means of the Higher Order SVD (HOSVD) introduced in [7].

For each mode µ of the tensor X , the HOSVD considers the corresponding matricization
X(µ) ∈ Rnµ×n1···nµ−1nµ+1···nd . Given a user-specified rank rµ ≤ nµ, the matrix Uµ is defined to
contain the rµ most significant left singular vectors of X(µ). Once all Uµ are computed, the

core tensor is set to vec(C) = (UT
1 ⊗ · · · ⊗ UT

d)vec(X). We can thus interpret the truncation
as a projection:

vec(X̃) = (U1U
T
1 ⊗ · · ·⊗ UdU

T
d)vec(X). (17)

The Tucker decomposition introduces a new rank concept, the Tucker ranks r1, . . . , rd,
where rµ = rankX(µ) for µ = 1, . . . , d. Note that every Tucker rank ri is bounded by the

tensor rank of X . Since UµUT
µ X(µ) is the best rank-rµ approximation of X(µ) in the Frobenius

norm, and the Euclidean norm of X is the Frobenius norm of X(µ), the approximation error
of the low-rank truncation (17) is bounded by

‖X − X̃‖2 ≤
√
d‖X − X best

r ‖2,

where X best
r is a best possible approximation with Tucker ranks r = (r1, . . . , rd).

3.2.2 Review of hierarchical Tucker decomposition

The shortcomings of the classical decompositions have sparked the development of alternative
decompositions, aiming at combining the advantages of CP and Tucker while avoiding their
disadvantages. In the following, we consider the hierarchical Tucker decomposition (HTD)
recently proposed by Hackbusch and Kühn [16] as well as Grasedyck [14].

17

B12

U1

U2

U3

U4

B34

B1234
(n2 × r2)

(n3 × r3)

(n4 × r4)

(n1 × r1)

(r3r4 × r34)

(r12r34 × 1)

(r1r2 × r12)

Figure 5: Example of a dimension tree for d = 4 dimensions.

The HTD can be viewed as an extension of the HOSVD described above. Let t =
{µ1, . . . , µq} represent a set of dimensions, and X(t) a matricization with respect to these
dimensions (e.g., X12 ∈ Rn1n2×n3n4 for X ∈ Rn1×n2×n3×n4). We define Ut to contain the rt
most significant left singular vectors of X(t). The matricization can be built up hierarchically,
e.g., for the case d = 4 we obtain the hierarchical projection:

vec(X̃) = (U1U
T
1 ⊗ U2U

T
2 ⊗ U3U

T
3 ⊗ U4U

T
4)(U12U

T
12 ⊗ U34U

T
34)vec(X)

= (U1 ⊗ U2 ⊗ U3 ⊗ U4)(B12 ⊗B34)B1234

where Uµ ∈ Rnµ×rµ , B12 = (UT
1 ⊗ UT

2)U12 ∈ Rr1r2×r12 , B34 = (UT
3 ⊗ UT

4)U34 ∈ Rr3r4×r34

and B1234 = (UT
12 ⊗ UT

34)vec(X) ∈ Rr12×r34 . More generally, a binary dimension tree T is
constructed, where each node t represents a set of dimensions, which are split up among its
child nodes t1 and t2. Each leaf node represents a single dimension. Any tensor is then
represented by the matrices Uµ in each dimension, the matrices Bt for each node (which can
be reinterpreted as 3-tensors), and the last vector B1...d, see also Figure 5.

A natural extension of the concept of Tucker ranks, the hierarchical ranks rt are defined
as rt = rankX(t). The storage requirements for a HTD are bounded by dnr+(d−1)r3, where
r is an upper bound on all ranks rt. The singular value tree is a good way to visualize the
general structure and approximability of a tensor in HTD, see Figures 6 and 7.

For a tensor in HTD, there is a recursive algorithm for computing the singular values
as well as the left singular vectors for each node [14]. This allows for the efficient low-rank
truncation of a tensor in HTD with a computational complexity of O(dr4+ dnr2). As for the
HOSVD, the obtained approximation is not optimal but satisfies the bound

‖X − X̃‖2 ≤
√
2d− 2‖X − X best

r ‖2,

where X best
r is the best possible approximation with hierarchical ranks r = {rt}t∈T . Trun-

cating a tensor in HTD involves calculating the QR decompositions of the matrices Uµ, Bt in
each node. If all ranks are constants, these matrices have size r × r and r2 × r, respectively.
In our experiments, we have observed that QR decompositions represent the most expensive
operation in all our algorithms, which requires the use of fairly small hierarchical ranks rt.

Structured matrix-tensor multiplication is similarly efficient as for the Tucker decomposi-
tion: (A1 ⊗ · · ·⊗Ad)(U1 ⊗ · · ·⊗ Ud) vec(C) = (A1U1 ⊗ · · ·⊗AdUd) vec(C) where C represents
the core tensor part of HTD, (B12 ⊗ · · · ⊗ Bd−1d) · · ·B1...d. Note that the core tensor is not

18

Dim. 1, 2 Dim. 3, 4, 5

Dim. 1 Dim. 2 Dim. 3 Dim. 4, 5

Dim. 4 Dim. 5

Figure 6: Singular value tree for the solution tensor of the elliptic parametrized PDE from
Section 4 with 4 parameters (2× 2 discs).

Dim. 1, 2, 3 Dim. 4, 5, 6

Dim. 1 Dim. 2, 3 Dim. 4 Dim. 5, 6

Dim. 2 Dim. 3 Dim. 5 Dim. 6

Figure 7: Singular value tree for the solution tensor of the stochastic elliptic PDE from
Section 5 with 5 parameters (corresponding to 5 terms in the truncated Karhúnen-Loève
expansion) and Karhúnen-Loève eigenvalues

√
λµ = 5 exp(−2µ).

19

directly affected by the multiplication, but enforcing orthogonality in A1U1, A2U2, . . . requires
QR decompositions of these matrices and the propagation of the corresponding R factors into
the components of the core tensor.

Addition of two HTD tensors is possible without any arithmetic operations, simply by
appropriately concatenating the components of both tensors. Note, however, that the size of
Bt increases significantly after addition:

Bt ∈ Rr1r2×r12 , B̃t ∈ Rr̃1r̃2×r̃12 ⇒ Bsum
t ∈ R(r1+r̃1)(r2+r̃2)×(r12+r̃12).

For example, when both summands have identical ranks, this increases the storage require-
ments by a factor of 8. Consequently, addition is only practical combined with frequent
truncation to lower rank.

Remark 3.7. Apart from the hierarchical Tucker decomposition, the Tensor Train (TT)
decomposition [26], as well as the related Tensor Chain and Quantics TT decompositions [18]
have been proposed in the literature. In theory, the TT decomposition can be interpreted as a
special case of the HTD, where the dimension tree is degenerate.

In the quantum mechanics community, the more general notion of tensor networks has
been proposed for the solution of two-dimensional quantum systems, in an extension of the
density-matrix renormalization group (DMRG) method for one-dimensional quantum systems,
see, e.g., [29].

3.3 Combination of hierarchical tensor decompositions with iterative algo-
rithms

In summary, the HTD fulfills the requirements listed in the beginning of this section. We can
now combine the HTD with iterative algorithms in the same way as described in Section 2
for the two-dimensional case. This gives rise to low-rank tensor variants of the Richardson,
CG, and BiCGstab methods.

Note that a low-rank tensor variant of the Richardson method has already been described
in [19], on the basis of the CP decomposition. A conceptually different approach has been
described by Ballani and Grasedyck [1], where the low-rank HTD structure is directly incor-
porated into the search space of GMRES.

4 Application to parametrized elliptic PDEs

We extend the elliptic one-paramater PDE from Section 2.3.1 to multiple parameters. Again,
we consider the stationary heat equation on a square domain Ω. However, instead of only one
disc the square now contains p mutually disjoint discs, see Figures 8. The heat conductivity
coefficient is piecewise constant, assuming a parameter αµ on each of the discs:

−∇(σ(x)∇u) = f in Ω = [0, L]2

u = 0 on Γ := ∂Ω,
(18)

with

σ(x) =

{
1 + αµ for x ∈ Dµ, µ = 1, . . . , p,

1 for x /∈
⋃p

µ=1Dµ.

20

0 1 2 3 4

0

1

2

3

4

 # Vertices : 1752, # Elements : 3330,
Edges : 5081

0 2 4 6

0

1

2

3

4

5

6

 # Vertices : 3900, # Elements : 7542,
Edges : 11441

Figure 8: Left: Mesh for 2× 2 discs. Right: Mesh for 3× 3 discs.

As before, this PDE is discretized by finite elements with piecewise linear basis functions,
resulting in a linear system of the form

(A0 +
p∑

µ=1

αµAµ)x(α) = b, (19)

where each of the matrices A1, . . . , Ap contains contributions from the corresponding disc.
For our tests, we used p = 4 and p = 9 resulting in the system sizes n = 1580 and n = 3644,
respectively, see also Figure 8. The right-hand side b is obtained from discretizing the source
term f ≡ 1. In all experiments, the matrix I ⊗ · · ·⊗ I ⊗A0 is chosen as the preconditioner.

For the discretization of the parameters, we choose {α(µ)
1 , . . . ,α(µ)

m } = {0, 1, . . . , 100}, and
hence mµ = 101 for µ = 1, . . . , p. The number of entries in the tensor X , containing the
solutions for all parameter samples, is therefore 1580 × 1014 = 1.64 × 1011 for p = 4 and
3644× 1019 = 3.98× 1021 for p = 9.

Compared to the one-parameter case, the low-rank truncation of the iterates is a more
complicated matter. During the HTD low-rank compression it would be preferable to trun-
cate only singular values that are negligible in the sense of an absolute or relative accuracy,
as discussed in Section 2.2.1. However, as the storage cost increases cubically with the hierar-
chical ranks, it may be necessary to also impose a maximal hierarchical rank. In all examples,
we used a relative accuracy of 10−10 and maximal hierarchical ranks of 10, 30 or 50.

Figure 9 displays the convergence of the residual norm ‖b−Ax‖/‖b‖ for the preconditioned
Richardson method with a heuristic choice of the parameter ω. As in the one-parameter case,
the convergence is monotone and slow. While the example with p = 4 parameters eventually
settles at a residual norm of 10−4 when using a maximal hierarchical rank of 30, the case
p = 9 parameters proves more difficult. Even when using a maximal hierarchical rank of 50,
the final accuracy is only about 10−3.

Figure 10 displays the convergence for the preconditioned CG method. The attained
accuracy is at the same level as for the Richardson method but the convergence is – as expected
– much faster. In contrast to the one-parameter case the convergence is not monotone, which
is likely due to the maximal hierarchical rank truncation. The singular value tree for the 2×2
case, with maximal hierarchical rank 30, is shown in Figure 6.

21

500 1000 1500 2000 2500 3000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

re
s
id

u
a

l

max. rank 10

max. rank 30

500 1000 1500 2000 2500 3000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k
re

s
id

u
a

l

max. rank 10

max. rank 30

max. rank 50

Figure 9: Left: Richardson method for 2× 2 discs. Right: Richardson method for 3× 3 discs.

10 20 30 40 50 60 70 80

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

re
s
id

u
a

l

max. rank 10

max. rank 30

10 20 30 40 50 60 70 80

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

re
s
id

u
a

l

max. rank 10

max. rank 30

max. rank 50

Figure 10: Left: CG method for 2× 2 discs. Right: CG method for 3× 3 discs.

22

5 Application to stochastic elliptic PDEs

Consider an elliptic PDE with stochastic coefficients:

−∇(a(x,ω)∇u(x,ω)) = f(x) in Ω× Γ,

u(x,ω) = 0 on ∂Ω× Γ,
(20)

where ω ∈ Γ is a random variable.
In the following, we give a brief description of how (20) can be turned into a deterministic

parametrized PDE and refer to, e.g., [33] for more details. Representing the random variable ω
by an infinite number of parameters α ∈ [−1, 1]∞, we employ the Karhúnen-Loève expansion
of a(x,α):

a(x,α) = a0(x) +
∞∑

µ=1

√
λµaµ(x)αµ, (21)

where aµ(x), µ ∈ N are normalized L2(Ω)-functions and the coefficients λµ ≥ 0 are monoton-
ically decreasing. Truncating the Karhúnen-Loève expansion after p terms then results in a
linearly parameter-dependent PDE, essentially of the form (18).

Again, a piecewise linear finite element discretization is used to yield a parametrized
linear system (19). As above, the parameters αµ can be discretized by sampling on a tensor
grid. Alternatively, one could also use a Galerkin approach based on Legendre polynomials
to approximate each αµ, see, e.g., [3].

Remark 5.1. Recall that the linear system arising from gathering all sampled linear systems
into a large block diagonal matrix takes the form

A = I ⊗ I ⊗ · · ·⊗A0 + I ⊗ · · ·⊗D1 ⊗A1 + · · ·+Dp ⊗ I ⊗ · · ·⊗ I ⊗Ap, (22)

where Dµ contain the parameter samples. The simplest nontrivial preconditioner uses the
mean value of the random variable, Mmean = I ⊗ · · ·⊗ I ⊗A0.

A more intricate preconditioner, which also takes the parameter samples into account,
has recently been proposed in [19, Proposition 2.6]. For this purpose, consider the following
approximation of the Karhúnen-Loève expansion (21):

a(x,α) ≈ ā0 +
∞∑

µ=1

√
λµāµαµ,

where āµ =
∫
Ω aµ(x)dx is the mean value of aµ(x). The finite element discretization applied

to this approximation leads to

(Aµ)ij =

∫

Ω
aµ(x)∇bi(x)∇bj(x)dx ≈ āµ

∫

Ω
∇bi(x)∇bj(x)dx =: āµ(L)ij ,

where L corresponds to the discretized Laplacian. This yields the preconditioner M̂·
(
I⊗ · · ·⊗

I ⊗ L
)
with

M̂ =
(
I ⊗ · · ·⊗ I ⊗ ā0D0 + I ⊗ · · ·⊗ I ⊗ ā1D1 ⊗ I + · · ·+ āpDp ⊗ I ⊗ · · ·⊗ I

)
,

23

where we formally set D0 = I. The inverse of M̂ can be approximated by an exponential
sum [13],

M̂−1 =
∞∑

k=−∞
ck

p⊗

µ=0

exp(−tkāµDµ) ≈
K∑

k=−K

ck

p⊗

µ=0

exp(−tkāµDµ) =: M̂−1
K .

Depending on the choice of the parameters ck, tk, see [4, 13], the approximation error M̂−1
K −

M̂−1 decays exponentially with
√
K or K. Eventually, we obtain the preconditioner

Mpara := M̂K ·
(
I ⊗ · · ·⊗ I ⊗ L

)
.

Note that multiplication with M̂−1
K only requires multiplication with diagonal matrices and

summation. As explained in Section 3.2.2, summation of low-rank HTD tensors becomes
quickly expensive and need to accompanied by repetitive low-rank truncations. The computa-
tional effort for applying M−1

para can therefore be expected to be significantly higher than for
applying M−1

mean. It depends on the application whether this additional effort is compensated
by convergence gains.

In our examples, we use the synthetic Karhúnen-Loève eigenfunctions

a0(x) = 1, aµ(x) = sin(µx), x ∈ [0,π].

in the Karhúnen-Loève expansion (21). The parameters αµ are sampled at 50 equidistant
points in [−1, 1]. The source term is is f(x) = sin(x). Note that this example was chosen to
match the numerical example in [19, Section 4.3].

In our first test, we choose the Karhúnen-Loève eigenvalues
√
λµ = 5 exp(−2µ). Figure 11

displays the obtained convergence of the low-rank tensor preconditioned Richardson and CG
methods. The singular value tree for 5 parameters and maximal hierarchical rank 50 is shown
in Figure 7. Since the variation of the parameter values is quite narrow, especially compared
with the example from Section 4, the preconditioner Mmean is very effective. This is reflected
in two ways in Figure 11: (1) the convergence curves of the Richardson and CG methods are
not dramatically different, (2) the preconditioner Mpara described in Remark 5.1 only leads
to moderate improvements.

Figures 12 and 13 display the dependence of the eventually attained accuracy of the
solution on the choice of the maximal hierarchical rank, when using the Karhúnen-Loève
eigenvalues

√
λµ = 0.5 exp(−2µ) and

√
λµ = (1 + µ)−2, respectively. In both cases, the

residual norm decreases rapidly as the maximal hierarchical rank increases. In the first case,
increasing the number of parameters from 5 to 10 or 20 has little effect on the attained
accuracy, as the coefficients λµ are nearly negligible for µ ≥ 6. In the second case, with
polynomially decaying

√
λµ, increasing the number of parameters has a negative impact on

the accuracy when keeping the hierarchical rank fixed.
Figures 12 and 13 also display execution times of the algorithms. As explained in Sec-

tion 3.2.2, the computational effort for low-rank truncations grows proportionally with pr4,
where r denotes the hierarchical rank. This growth is clearly reflected in Figure 13.

Remark 5.2. In applications, one is typically interested in computing statistics for the solu-
tion of the stochastic PDE (20). The sample mean value of the discretized solutions x(α) can
be easily retrieved from the solution tensor X :

x̄ =
1

m1m2 · · ·mp

([
1, . . . , 1

]
⊗ · · ·⊗

[
1, . . . , 1

]
⊗ I

)
vec(X).

24

0 10 20 30 40 50 60
10

−6

10
−4

10
−2

10
0

k

re
s
id

u
a
l

CG

Richardson

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

k

re
si

d
u
a
l

Preconditioner mean
Preconditioner para

Figure 11: Left: Richardson and CG methods with preconditionerMmean for p = 20, maximal
hierarchical rank 20, with

√
λµ = 5 exp(−2µ). Right: CG method using the preconditioners

Mmean and Mpara with K = 5.

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

hierarchical rank

re
si

d
u

a
l

p = 5
p = 10
p = 20

0 10 20 30 40 50
10

0

10
1

10
2

10
3

hierarchical rank

e
xe

cu
tio

n
 t
im

e
 [
s]

p = 5
p = 10
p = 20

Figure 12: Rank-dependence of the preconditioned CG method for
√
λµ = 0.5 exp(−2µ) and

different values of p. Left: Final accuracy. Right: Execution time.

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

hierarchical rank

re
si

d
u
a
l

p = 5
p = 10
p = 20

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

hierarchical rank

e
xe

cu
tio

n
 t
im

e
 [
s]

p = 5
p = 10
p = 20

Figure 13: Rank-dependence of the preconditioned CG method for
√
λµ = (1 + µ)−2 and

different values of p. Left: Final accuracy. Right: Execution time.

25

For a maximal hierarchical rank r, this can be evaluated within O(pnr+ pr3) operations. The
vector containing the sample variance for each entry of x is given by

Var(x) =
1

ω
diag(Y Y T), (23)

where Y = X(0) − x̄
[
1, . . . , 1

]
and ω = m1m2 · · ·mp or ω = m1m2 · · ·mp − 1. It can be

shown that (23) can be calculated recursively, requiring O(-r4+nr) operations in total, where
- represents the depth of the dimension tree.

6 Application to parametrized convection-diffusion equation

As a final, non-elliptic example, we consider the stationary convection-diffusion equation on
the domain introduced in Section 4:

−∇(σ(x)∇u) + cT∇u = f in Ω = [0, L]2

u = 0 on Γ := ∂Ω,

with

σ(x) =

{
1 + αµ for x ∈ Dµ,

1 for x /∈
⋃p

µ=1Dµ.

The finite element discretization for the domain with 2 discs (p = 4), see Figure 8, once again
results in a linear system of the form

(
A0 +

p∑

µ=1

αµAµ

)
x(α) = b,

with system size n = 1580. As the convection term is not parameter-dependent, it only affects

the matrix A0. The source term is f(x) = 1. The parameters samples are {α(µ)
1 , . . . ,α(µ)

m } =
{0, 0.1, . . . , 10}, hence mµ = 101 for µ = 1, . . . , p. Consequently, the number of entries in the
tensor X is 1580× 1014 = 1.64× 1011.

Figure 14 displays the convergence of the preconditioned CG method applied to the normal
equations ATAx = AT b (i.e., CGNR) with different choices of the maximal ranks. The
preconditioner I⊗· · ·⊗I⊗AT

0 A0 is used. Figure 15 displays the convergence of the two variants
of the preconditioned BiCGstab method described in Algorithm 3, with preconditioner I⊗· · ·⊗
I⊗A0. As expected, both BiCGstab variants converge much faster than CGNR. Additionally,
CGNR stagnates at a higher residual norm than the best accuracy attained by both BiCGstab
variants. As in the one-parameter case, the convergence behavior of Variant 2 becomes erratic
when the final accuracy is attained. Even worse, the residual norm appears to increase again
when the iteration is continued beyond this point. Thus, stopping the iteration becomes a
subtle issue, which may render this variant impractical.

7 Conclusions

Solving linear systems depending on many parameters is a computationally demanding task.
In this paper, we have shown – theoretically as well as numerically – that combining standard
iterative methods with low-rank tensor decompositions allows to handle parametrized linear

26

50 100 150 200 250 300 350 400
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

re
s
id

u
a
l

max. rank 10

max. rank 30

max. rank 50

Figure 14: Convergence behavior of preconditioned CG applied to the normal equations.

5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

re
s
id

u
a
l

max. rank 10

max. rank 30

max. rank 50

5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

re
s
id

u
a
l

max. rank 10

max. rank 30

max. rank 50

Figure 15: Convergence behavior of preconditioned BiCGstab. Left: Variant 1, Right: Variant
2.

27

system that are computationally inaccessible to standard methods. For an example described
in Section 4 the solution of about 1018 linear systems of order 3644 with accuracy 10−3

requires 61 minutes with our low-rank tensor variant of the preconditioned CG method. In
comparison, with a standard solver that requires 10 milliseconds for each linear system, the
overall solution time would be 3× 108 CPU years!

Several aspects of the paper merit further investigation. On the theoretical side, it is not
clear whether the approximation bound by Theorem 3.6 could be improved to yield a truly
exponential error decay. Also, the result of the theorem is tailored to the CP decomposition,
possibly resulting in rather loose upper bounds for the hierarchical Tucker decomposition
used in this paper. It may be possible to obtain better bounds by considering approximation
problems more natural for the latter decomposition. This would also provide more insight
into the optimal order in the dimension tree. On the algorithmic side, further investigation
is required to understand which variants of Krylov subspace methods are robust to low-rank
truncations, particularly in the nonsymmetric case. Our numerical examples only covered
linear parameter-dependence, for which the Kronecker structure in the matrix A is particu-
larly evident. To address nonlinear dependencies, transformation techniques and polynomial
expansion combined with (exact) linearization can be used.

References

[1] J. Ballani and L. Grasedyck. A projection method to solve linear systems in tensor
format. Preprint 46, DFG-Schwerpunktprogramm 1324, May 2010.

[2] R. Barrett, M. Berry, T. F. Chan, J. W. Demmel, J. Donato, J. J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

[3] M. Bieri, R. Andreev, and C. Schwab. Sparse tensor discretization of elliptic sPDEs.
Report 2009-07, Seminar for Applied Mathematics, ETH Zurich, 2009.

[4] D. Braess and W. Hackbusch. Approximation of 1/x by exponential sums in [1,∞). IMA
J. Numer. Anal., 25(4):685–697, 2005.

[5] T. F. Chan and M. K. Ng. Galerkin projection methods for solving multiple linear
systems. SIAM J. Sci. Comput., 21(3):836–850, 1999.

[6] A. Cohen, R. DeVore, and C. Schwab. Analytic regularity and polynomial approxima-
tion of parametric and stochastic elliptic PDEs. Report 2010-03, Seminar for Applied
Mathematics, ETH Zurich, 2010.

[7] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decom-
position. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[8] K. V. Fernando and S. Hammarling. A product induced singular value decomposition
(πSVD) for two matrices and balanced realization. In Linear algebra in signals, systems,
and control (Boston, MA, 1986), pages 128–140. SIAM, Philadelphia, PA, 1988.

[9] R. W. Freund. Solution of shifted linear systems by quasi-minimal residual iterations.
In Numerical linear algebra (Kent, OH, 1992), pages 101–121. de Gruyter, Berlin, 1993.

28

[10] A. Frommer and U. Glässner. Restarted GMRES for shifted linear systems. SIAM J.
Sci. Comput., 19(1):15–26, 1998.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

[12] L. Grammont, N. Higham, and F. Tisseur. A framework for analyzing nonlinear eigen-
problems and parametrized linear systems. MIMS EPrint 2009.51, 2009. To appear in
Linear Algebra Appl.

[13] L. Grasedyck. Existence and computation of low Kronecker-rank approximations for
large linear systems of tensor product structure. Computing, 72(3-4):247–265, 2004.

[14] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on
Matrix Analysis and Applications, 31(4):2029–2054, 2010.

[15] G.-D. Gu and V. Simoncini. Numerical solution of parameter-dependent linear systems.
Numer. Linear Algebra Appl., 12(9):923–940, 2005.

[16] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier
Anal. Appl., 15(5):706–722, 2009.

[17] K. Jbilou, A. Messaoudi, and H. Sadok. Global FOM and GMRES algorithms for matrix
equations. Appl. Numer. Math., 31(1):49–63, 1999.

[18] B. N. Khoromskij and I. V. Oseledets. Quantics-tt approximation of elliptic solution
operators in higher dimensions. Preprint 79/2009, Max-Planck-Institut für Mathematik
in den Naturwissenschaften, 2009.

[19] B. N. Khoromskij and C. Schwab. Tensor-structured Galerkin approximation of para-
metric and stochastic elliptic PDEs. Technical report 2010-04, Seminar for applied math-
ematics, ETH Zurich, February 2010.

[20] M. E. Kilmer and E. de Sturler. Recycling subspace information for diffuse optical
tomography. SIAM J. Sci. Comput., 27(6):2140–2166, 2006.

[21] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[22] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with tensor
product structure. SIAM Journal on Matrix Analysis and Applications, 31(4):1688–1714,
2010.

[23] G. G. Lorentz. Approximation of functions. Chelsea Publishing Co., New York, second
edition, 1986.

[24] J. C. Miellou, P. Cortey-Dumont, and M. Boulbrachene. Perturbation of fixed point
iterative methods. Advances in Parallel Computing, I:81–122, 1990.

[25] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method
for partial differential equations with random input data. SIAM J. Numer. Anal.,
46(5):2309–2345, 2008.

29

[26] I.V. Oseledets. Compact matrix form of the d-dimensional tensor decomposition.
Preprint 09-01, Institute of Numerical Mathematics RAS, Moscow, Russia, 2009.

[27] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti. Recycling Krylov
subspaces for sequences of linear systems. SIAM J. Sci. Comput., 28(5):1651–1674, 2006.

[28] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha,
PA, 2003.

[29] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77(1):259–
315, Apr 2005.

[30] V. Simoncini. The extended Krylov subspace for parameter dependent systems, 2009.
To appear in Applied Num. Math.

[31] V. Simoncini and F. Perotti. On the numerical solution of (λ2A + λB + C)x = b and
application to structural dynamics. SIAM J. Sci. Comput., 23(6):1875–1897, 2002.

[32] P. Spiteri, J.-C. Miellou, and D. El Baz. Perturbation of parallel asynchronous linear
iterations by floating point errors. Electron. Trans. Numer. Anal., 13:38–55 (electronic),
2002.

[33] R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic
problems with stochastic coefficients. IMA J. Numer. Anal., 27(2):232–261, 2007.

[34] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. The Behavior of Nonnormal
Matrices and Operators. Princeton University Press, Princeton, NJ, 2005.

[35] A. van der Sluis and H. A. van der Vorst. The rate of convergence of conjugate gradients.
Numer. Math., 48(5):543–560, 1986.

[36] T. G. Wright. EigTool, 2002. See http://www.comlab.ox.ac.uk/pseudospectra/

eigtool/.

30

Research Reports

No. Authors/Title

10-16 D. Kressner and C. Tobler
Low-Rank tensor Krylov subspace methods for parametrized linear
systems

10-15 C.J. Gittelson
Representation of Gaussian fields in series with independent coefficients

10-14 R. Hiptmair, J. Li and J. Zou
Convergence analysis of Finite Element Methods for H(div;Ω)-elliptic
interface problems

10-13 M.H. Gutknecht and J.-P.M. Zemke
Eigenvalue computations based on IDR

10-12 H. Brandsmeier, K. Schmidt and Ch. Schwab
A multiscale hp-FEM for 2D photonic crystal band

10-11 V.H. Hoang and C. Schwab
Sparse tensor Galerkin discretizations for parametric and random
parabolic PDEs. I: Analytic regularity and gpc-approximation

10-10 V. Gradinaru, G.A. Hagedorn, A. Joye
Exponentially accurate semiclassical tunneling wave functions in one
dimension

10-09 B. Pentenrieder and C. Schwab
hp-FEM for second moments of elliptic PDEs with stochastic data.
Part 2: Exponential convergence

10-08 B. Pentenrieder and C. Schwab
hp-FEM for second moments of elliptic PDEs with stochastic data.
Part 1: Analytic regularity

10-07 C. Jerez-Hanckes and J.-C. Nédélec
Asymptotics for Helmholtz and Maxwell solutions in 3-D open
waveguides

10-06 C. Schwab and O. Reichmann
Numerical analysis of additive, Lévy and Feller processes with applica-
tions to option pricing

10-05 C. Schwab and R. Stevenson
Fast evaluation of nonlinear functionals of tensor product wavelet expan-
sions

