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Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

Swiss Federal Institute of Technology Zurich

Convergence analysis of
Finite Element Methods for

H(div; Ω)-elliptic interface problems

R. Hiptmair, J. Li and J. Zou∗

Research Report No. 2010-14
May 2010

Seminar für Angewandte Mathematik
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Abstract

In this article we analyze a finite element method for solvingH(div; Ω)-elliptic interface prob-
lems in general three-dimensional Lipschitz domains with smooth material interfaces. The continu-

ous problems are discretized by means of lowest orderH(div; Ω)-conforming finite elements of the
first family (Raviart-Thomas or Nédélec face elements) on a family of unstructured oriented tetrahe-

dral meshes. These resolve the smooth interface in the sense of sufficient approximation in terms of

a parameter δ that quantifies the mismatch between the smooth interface and the finite element mesh.
Optimal error estimates in theH(div; Ω)-norms are obtained for the first time. The analysis is based
on a so-called δ-strip argument, a new extension theorem forH1(div)-functions across smooth inter-
faces, a novel non-standard interface-aware interpolation operator, and a perturbation argument for

degrees of freedom inH(div; Ω)-conforming finite elements. Numerical tests are presented to verify
the theoretical predictions and confirm the optimal order convergence of the numerical solution.

Key words. H(div; Ω)-elliptic interface problems, finite element methods, face elements, con-
vergence analysis.

AMS subject classification 2000. 65N12, 65N30

1 Introduction

Given a bounded domain Ω ⊂ R3 with a Lipschitz boundary, we assume that the domain Ω consists
of two subdomains Ω1 and Ω2, where Ω1 ⊂⊂ Ω, Ω2 := Ω \ Ω1. The internal interface Γ := ∂Ω1 is

assumed to be sufficiently smooth, namely, at least C2-smooth (see Figure 1 for an illustration of the

geometric setting). We are concerned with solving theH(div; Ω)-elliptic interface problem

− grad(χ div u) + βu = f in Ω , (1.1)

with Dirichlet boundary condition

u · n = 0 on ∂Ω , (1.2)

and jump conditions on the interface

[n · u] = 0 on Γ , (1.3)

[χ div u] = 0 on Γ , (1.4)

∗SAM, ETH, Zürich, CH-8092 Zürich, Switzerland (hiptmair@sam.math.ethz.ch).
†SAM, ETH, Zürich, CH-8092 Zürich, Switzerland (jingzhi.li@sam.math.ethz.ch).
‡Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. The work of this author

was substantially supported by Hong Kong RGC grants (Project 404407 and 404606). (zou@math.cuhk.edu.hk).
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where f ∈ L
2(Ω) is the source term, and n stands for a unit normal vector to the boundary ∂Ω1

pointing into Ω2. By [v] := v1 − v2 we denote the jump of a function v across the interface Γ. For
ease of exposition, we assume that the coefficient functions χ and β are piecewise constant, i.e.

χ(x) =

{
χ1, x ∈ Ω1;

χ2, x ∈ Ω2,
β(x) =

{
β1, x ∈ Ω1;

β2, x ∈ Ω2,

where χi’s and βi’s (i = 1, 2) are positive constants. The more general case of piecewise smooth
uniformly positive coefficients in L∞(Ω) can be treated similarly with no essential difficulty by
using techniques like local averaging in an element.

Ω

Ω1Ω2

n

Γ

Figure 1: An illustrative sketch of the setting of the problem.

H(div; Ω)-elliptic interface problems like (1.1)–(1.4) arise from, e.g., the first-order system
least-squares formulation of elliptic interface problem, or preconditioning for the mixed finite el-

ement using a gradient formulation of the Dirichlet problem (see, e.g., [2, 7, 12, 17, 26] and the ref-

erences therein). Finite element methods for H(div; Ω)-elliptic problems have been well studied
in [2, 14, 17]. Nevertheless, the discontinuity of the coefficients across the smooth interface creates

additional challenges. First, the global regularity of the solution might be significantly lower than

the local regularity in each subdomain due to the jump of coefficients across the interface. Thus, the

techniques used for traditionalH(div; Ω)-finite element methods with full regularity are not appli-
cable here. Second, we are confronted with the issues of how to approximate the smooth interface by

the finite element mesh, how to define practical numerical quadrature for those elements partially cut

through by the interface, and, last but not least, whether it is still possible to obtain optimal conver-

gence order using theH(div; Ω)-conforming finite element method forH(div; Ω)-elliptic interface
problems? Below we address all these issues.

Due to the practical relevance of interface problems in many engineering and industrial appli-

cations, numerical solution methods for interface problems have been investigated extensively. One

may refer to the monograph [20] and the references therein for a history of the development in this

research field. Numerous variants of finite element methods (FEMs) for classical elliptic interface

problems inH1(Ω)- andH(curl; Ω)-settings have been extensively studied in the past few decades.
Interested readers may refer to [3, 4, 6, 9, 13, 16, 18, 19, 24]. Nevertheless, to the best knowledge of

the authors, there seems to exist no corresponding work on the convergence analysis ofH(div; Ω)-
elliptic interface problems discretized by means of interface-aligned face elements.

This article completes the numerical analysis of conforming finite element methods for three

important classes of elliptic interface problems, namely those set in H1(Ω), H(curl; Ω) and
H(div; Ω). General higher order Lagrange finite element methods forH1(Ω)-elliptic interface prob-
lems were discussed in [19]. In this paper key tools and concepts like the δ-strip argument and the
perturbed interpolation were first introduced. A crucial insight obtained in [19] was that the optimal

convergence order depends not only on the mesh size but also on the mismatch between the inter-

face and the mesh. Subsequently, in [16] we investigated H(curl; Ω)-elliptic interface problems
using lowest order edge elements of the first family. We derived optimal order convergence in the

2



H(curl; Ω)-norm for the first time. We relied on novel techniques such as the generalization of the
concept of perturbed interpolation to edge elements, an H

1(curl; Ωi) extension theorem and what
we dubbed a “pyramid argument”.

The main contribution of the current work is to derive optimal order convergence in the

H(div; Ω)-norm for H(div; Ω)-elliptic interface problems using lowest order Raviart-Thomas (or
Nédélec)H(div; Ω)-conforming finite elements [5,22]. We follow the lines of [16], with new twists,
entailed by the “more non-local” nature of the degrees of freedom forH(div; Ω)-conforming (face)
finite elements. Therefore, the analytical tools and techniques had to be adjusted. This led to

• a new non-standard interface-aware face element based interpolant, which is shown to possess

optimal approximation in the sense of theH(div; Ω)-norm, Sect. 2.4,

• a modified δ-strip argument for quantifying the relation of error estimate near the interface
in terms of the mismatch parameter δ between the triangulation and the smooth interface, see
Cor. 3.2,

• a new extension theorem for H
1(div; Ωi) functions across smooth interfaces for i = 1, 2,

which bridges the gap between standard and non-standard interpolation and thus is crucial for

the convergence analysis, see Thm. 3.4,

• a perturbation argument for the degrees of freedom ofH(div; Ω)-conforming finite elements,
see the proof of the pivotal Lemma 4.2.

The remainder of the paper is organized as follows: In Section 2, we first introduce some nec-

essary notations and assumptions to be used later, then derive the variational formulation for the

H(div; Ω)-elliptic interface problem, and propose a practical finite element approximation using the
lowest order Raviart-Thomas finite element spaces. In Section 3 we establish some important auxil-

iary results, including a δ-strip argument for error estimation near the interface and the construction
of a new extension operator forH1(div; Ωi) functions across smooth interfaces for i = 1, 2. In Sec-
tion 4, we prove optimal order convergence in the sense of H(div; Ω)-norm of the proposed finite
element method for H(div; Ω)-elliptic interface problems. In Section 5, numerical experiments are
presented to justify the theoretical prediction of the optimal convergence order. We summarize the

work and point out future directions in Section 6.

2 Finite element approximation

We stick to the usual notations for Sobolev spaces H(div; Ω), H0(div; Ω), etc, see [12, Chap. 1]
or [21]. We also write

H
1(div; Ω) =

{
v ∈ H

1(Ω) | div v ∈ H1(Ω)
}

.

For a function u, we denote by ui its restriction to Ωi, i.e., ui := u|Ωi , for i = 1, 2.

2.1 Weak formulation

The weak formulation of (1.1)–(1.4) is straightforward and reads as follows:

Problem (Q) Seek u ∈ H0(div; Ω) such that

a(u,v) =

∫

Ω
f · v dx ∀ v ∈ H0(div; Ω) , (2.1)

with the bilinear form defined by

a(u,v) :=
2∑

i=1

∫

Ωi

(χi div ui · div vi + βiui · vi) dx . (2.2)

By the assumptions on χ and β in Section 1, the bilinear forms a(·, ·) in (2.2) agrees with the
H(div; Ω)-inner product of the Hilbert space H0(div; Ω) up to the weights χi’s and βi’s, and the

associated energy norm

‖u‖a = a(u,u)1/2 (2.3)
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is equivalent to the H(div; Ω)-norm. This ensures the existence and uniqueness of the solution of
(2.1) by the Lax-Milgram Lemma [10, Theorem 1.1.3].

Throughout the paper, we assume that the solution of (2.1) has the regularity H0(div; Ω) ∩
H

1(div; Ω1) ∩ H
1(div; Ω2), which is a natural assumption in the present geometric setting.

2.2 Triangulations

Let the polyhedral domain Ω ∈ R3 be equipped an oriented unstructured tetrahedral meshes (Th)h

in the sense of [15, Def. 3], where h stands for the meshwidth. We denote by Fh, Eh and Nh the

respective sets of oriented faces, oriented edges and vertices of the triangulation Th. The quality of

Th can be gauged by means of its meshsize h := maxK hK , shape regularity measure ρ(Th)and
quasi-uniformity measure γ(Th) [8, Sect. 3] as follows

ρ(Th) := max
K∈Th

hK

rK
, h := max

K∈Th

hK , γ(Th) := max
K∈Th

h

hK
,

where

hK := sup{|x− y| : x,y ∈ K} ,

rK := sup{r > 0 : ∃x ∈ K; |x − y| < r ⇒ y ∈ K} .

In the sequel, we will frequently denote by c and C generic positive constants which may depend

on the domain Ω, the coefficients χi’s, βi’s and the mesh parameters ρ(Th) and γ(Th), but must not
depend on the meshwidth h and the related functions.

In the remainder of this section, we shall illustrate our assumptions on the triangulation in relation

to the interface. First of all, our finite element discretization scheme relies heavily on the concept of

interface-aware triangulation, see [16, Ass. 2.1]:

Assumption 2.1 (Interface-awareness). The triangulation Th is interface-aware if for every K ∈ Th

all its four vertices are either in Ω1 or in Ω2, and this element K is assumed to intersect with the

interface Γ in such a way that at most three of its vertices are located on the interface Γ while all

remaining vertices are either in Ω1 or in Ω2.

Let us comment on Assumption 2.1 before we proceed. To meet the requirement of Assump-

tion 2.1, the triangulation Th should not be too coarse with respect to the interface, i.e., it is not

allowed to have all the four vertices of an elementK ∈ Th located on the interface Γ. This might be
the case for some element on a rather coarse triangulation surrounded by the interface of large cur-

vature. Nevertheless, we can always refine the mesh until all the elements satisfies Assumption 2.1

owing to the smoothness of the interface.

When an element K satisfies K ∩ Γ )= ∅, it is called an interface element, otherwise a non-
interface element. The set of all interface elements is denoted by T∗ := { K ∈ Th |K ∩ Γ )= ∅ }
and T i

∗ := { K ∈ T∗ | all nodes ofK are in Ωi } represents the set of all interface elements of Ωi,

for i = 1, 2. For a fixed small δ > 0, we define the δ-strip regions around the interface in Ω and Ωi,

i = 1, 2, respectively, by

Sδ := { x ∈ Ω | dist(x,Γ) < δ }, Si
δ := { x ∈ Ωi | dist(x,Γ) < δ }, i = 1, 2.

It is obvious that Sδ = S1
δ ∪ S2

δ ∪ Γ and T∗ = T 1
∗ ∪ T 2

∗ , and these δ-strip regions will be used
for the error estimate near the interface, which in general cannot be captured using the techniques

of standard interpolation approximation. For a vivid illustration of the concepts above, readers may

refer to Figure 2 for a 2D scenario for better understanding.

According to Assumption 2.1, for anyK ∈ T∗, it must intersect with the interface Γ in one and
only one of the following three situations

1. One vertex ofK is located on the interface Γ, and the vertex located on the interface is called
an interface vertex.

2. Two vertices of K are located on the interface Γ, and the oriented edge with two vertices on
the interface is called an interface edge.
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Ω

Ω1Ω2

n

Γ
K1

K2

K3

K4

Figure 2: Sδ: the region of width 2δ between the two blue closed dashed lines
around the interface Γ in red. Interface elements: K3 ∈ T 1

∗ , K4 ∈ T 2
∗ . Non-

interface elements:K1 ∈ T 1, K2 ∈ T 2.

3. Three vertices of K are located on the interface Γ, and the triangular oriented face with three
vertices on the interface is called an interface face of the first kind, while the face with only

two vertices on the interface is called an interface face of the second kind.

And these notions are further illustrated by two typical interface elements intersecting the interface

as shown in Figure 3.

For the sake of discretization, the smooth interface Γ has to be approximately resolved by tetra-
hedral meshes. We quantify the quality of the approximation of the smooth interface Γ by the trian-
gulation Th in terms of a parameter δ through the following definition, see [16, Def. 2.2]:

Definition 2.2. The triangulation Th is said to resolve the interface Γ up to an error δ if it can be
decomposed as Th = T 1 ∪ T 2 ∪ T 1

∗ ∪ T 2
∗ , where

T i = { K ∈ Th ; K ⊂ Ωi \ Sδ } ,

andK ∈ T i
∗ if

max{ dist(x,Γ ∩ K) ; x ∈ K ∩ Ωi′ } ≤ δ ,

for i = 1, 2, where we define i′ = 1 if i = 2 and i′ = 2 if i = 1.

We may refer to Figure 2 for an illustration of Definition 2.2. It is worth remarking that although

we assume that all vertices of an elementK must belong to either subdomainΩ1 or Ω2, it is allowed

that the interface may cut some elements into two parts lying in two different subdomains, see, for

instance, triangle K4 in Figure 2. By Definition 2.2 we easily see that any interface element K can

be embedded in the union of the interface strip Sδ and one of the subdomainsΩ1 and Ω2.

For a smooth interface Γ approximated by a union of triangular faces of the triangulation Th, we

may further quantify the parameter δ in terms of the meshsize h as given by the next assumption.

Assumption 2.3. The interface Γ is C2-smooth. For the interface-aware meshes, there exists some

δ of order h2 for appropriately small h such that K ∩ Ω2 ⊂ S2
δ for all elements K ∈ T 1

∗ , and

K ∩ Ω1 ⊂ S1
δ for all elementsK ∈ T 2

∗ .

A detailed proof of Assumption 2.3 of δ-approximation property for the interface-aware triangu-
lation in two dimensions can be found in [9] using local coordinate system and the same idea can be

easily extended to 3D with no essential changes.

For the subsequent error estimate, we will use a crucial perturbed interpolation operator. To that

end, we first introduce three more helpful auxiliary concepts aided with the sketches in Figure 4.

Definition 2.4 (Interface twin edge). For any oriented interface edge e1 ∈ Eh, there exist two in-

terface elements K1 and K2, with non-interface vertices p1 and p2, respectively, which share the

interface edge e1 and another interface vertex q1, such that there is a unique oriented curve ẽ1

5



K1

K2

e1

e2

e3

q1

q2

q3

p1

p2

Interface

(a)

e1

e2

e3

q1

q2

q3

f

(b)

e1

q2

q3

p1

f1

(c)

Figure 3: (a): Two typical tetrahedral interface elementsK1 and K2 intersect with

the interface Γ. The interface are visualized by the intersected piecewise smooth
curves composed of blue and red curved segments on the surfaces of the tetrahedra

K1 andK2. The interface edges are e1, e2 and e3 denoted by black straight (dashed)

line segments; (b): An interface face f of the first kind; (c): An interface face f1 of

the second kind.

which is the intersection of the interface and two triangular faces determined by p1 with e1, and p2

with e1, respectively, and shares with e1 the same starting and end points. We call ẽ1 the interface

twin edge associated with e1 (see Figure 4(a) for an illustration).

It is emphasized that any interface edge is always a straight line segment, and the associated

interface twin edge could be a piecewise smooth curve (see, e.g., the alternating red and blue smooth

curve ẽ1 in Figure 4(a)) which shares the two endpoints with the interface edge e1.

Definition 2.5 (Interface twin face of the first kind). For any oriented interface face of the first

kind f ∈ Fh enclosed by three interface edges e1, e2, e3 ∈ Eh, with which three interface twin

edges ẽ1, ẽ2, ẽ3 are associated, respectively, there exists a unique smooth surface f̃ on the interface

circumscribed by ẽ1, ẽ2, ẽ3. We call f̃ an interface twin face of the first kind associated with the face
f . The orientation of f̃ is determined in the sense that it approximates that of f as meshes refine.

(See Figure 4(b))

Definition 2.6 (Interface twin face of the second kind). For any oriented interface face of the second

kind f1 ∈ Fh with an interface edge e1 ∈ Eh, with which the interface twin edge ẽ1 are associated,

if f1 is an interface face of an interface element K ∈ T i
∗ , i = 1 or 2, then there exists a unique

piecewise planar surface,

f̃1 = (f1 ∪ Se1,ẽ1
) \ Ωi′ ,

with \ being understood as set minus operation. The orientation of f̃1 is determined in such a way

that f1 and f̃1 share the same orientation as f1 on f1 \ Se1,ẽ1
and f̃1 extends this orientation on the

other part Se1,ẽ1
\ f1. We call f̃1 an interface twin face of the second kind associated with the face

f1. (See Figure 4(c))

For an oriented interface face of the second kind fi consisting of one interface edge ei ∈ Eh (with

which the interface twin edges ẽi are associated), we will need the following set

Sei,ẽi
= (fi \ f̃i) ∪ (f̃i \ fi) ,

which denotes the slim open piecewise planar surface set surrounded by the curves ei and ẽi, for

i = 1, 2, 3. (See Figure 4(e))
For an interface face f of the first kind enclosed by three interface edges e1, e2, e3 ∈ Eh, with

which three interface twin edges ẽ1, ẽ2, ẽ3 are associated, respectively, we denote by Vf,f̃ the closed

volume set enclosed by the surfaces f , f̃ , Se1,ẽ1
, Se2,ẽ2

and Se3,ẽ3
(See Figure 4(d)). It is readily to
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K1

K2

e1

ẽ1

e2

ẽ2

e3

ẽ3

q1

q2

q3

p1

p2

Interface

(a)

ẽ1

ẽ2

ẽ3

q1

q2

q3

f̃

(b)

ẽ1

p1

p1

p1

f̃1

(c)

V
f,f̃

(d)

Se1,ẽ1

(e)

Figure 4: Illustration of interface twin edges and faces. (a): The interface twin edges

are ẽ1, ẽ2 and ẽ3 denoted by the piecewise smooth curves composed of blue and red

curved segments on the interface; (b): An interface twin face f̃ of the first kind; (c):
An interface twin face f̃1 of the second kind; (d): small volume V

f,f̃
sandwiched

by interface (twin) faces of first kind; (e): slim area Se1,ẽ1
enclosed by interface

(twin) edges.
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see by Assumption 2.3 that

Vf,f̃ ⊂ Sδ and Sei,ẽi
⊂ Sδ for i = 1, 2, 3.

For the interface-aware triangulation, it is easy to deduce that

|Vf,f̃ | ∼ δh2, |Sei,ẽi
| ∼ δh (2.4)

where | · | represents either volume or area measures.
In the sequel, the triangulation Th will be assumed to be sufficiently fine to allow the existence of

interface twin edges. For some interface with bizarre geometry the interface twin edges might not be

well defined for certain coarse meshes. But due to theC2-smoothness of the interface, we can always

refine the mesh till a desired interface twin edge (resp. the associated interface twin face) is obtained

for any interface edge.

2.3 Finite element discretization

A suitable trial space Fh ⊂ H0(div; Ω) for the Galerkin discretization of (2.1) is supplied by the
lowest order Raviart-Thomas elements of the first family (see, e.g., [5, 22]), that is,

Fh :=
{
vh ∈ H0(div; Ω) | vh|K(x) = aK + bKx, aK ∈ R3, bK ∈ R, x ∈ K, ∀K ∈ Th

}
.

Writing F̂h for the set of all interior faces of Th, the degrees of freedom of Fh are given by the

surface integrals

vh .→
∫

f
vh · n dS , f ∈ F̂h .

It is well established that there exists a well-defined global finite element interpolation operatorΠh :
H

1(div; Ω) .→ Fh (cf. [21, Thm. 5.25, Sect. 5.4]), which has the following approximation property.

Lemma 2.7. The interpolation operatorΠh possesses the optimal approximation property

∃C = C(ρ(Th)) : ‖u− Πhu‖H(div;Ω) ≤ Ch‖u‖H1(div;Ω) ∀ u ∈ H
1(div; Ω) . (2.5)

Moreover, we recall that face elements are an affine equivalent family of finite elements with

respect to the pullback transformation (see [15, 21])

Bv̂(x̂) := det(B)v(x) , x = Bx̂ + t , B ∈ R3,3, t ∈ R3 . (2.6)

On a tetrahedron K with vertices [a1,a2,a3,a4] and barycentric coordinates λ1, λ2, λ3, λ4, the

local shape function associated with a face f = [ai,aj ,ak] are given by (see [15, Sect. 3.2])

b
f
K = 2(λi gradλj × gradλk + λj gradλk × grad λi

+λk grad λi × grad λj) , 1 ≤ i < j < k ≤ 4 . (2.7)

They can be assembled into a collection of global bases {bi, i = 1, . . . , (F̂h} of Fh.

The following lemma can be shown by adapting the proof of [15, Lemma 3.12] to bound the local

basis functions in terms of the mesh size h.

Lemma 2.8. Let Th be a quasi-uniform, oriented unstructured tetrahedral mesh in Ω with meshsize

h. Then there exist some positive constants C such that the local basis functions bf
K , f ⊂ ∂K , satisfy

the following error estimates

‖bf
K‖2

H(div;K) ≤
C

h
, ‖ divb

f
K‖2

H(div;K) ≤
C

h3
. (2.8)

With the finite element function spaces presented above, the finite element approximation of (2.1)

can be stated as follows:
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Problem (Qh) Seek uh ∈ Fh such that

a(uh,vh) =

∫

Ω
f · vh dx ∀ vh ∈ Fh . (2.9)

The existence and uniqueness of the solution of (2.9) follow from the Lax-Milgram Lemma

[10, Theorem 1.1.3], similar to those of the continuous problem (Q). One natural idea to derive the

estimate of discretization error is through the best approximation error estimate in light of the quasi-

optimality from Cea’s lemma. But this is only possible, if the Galerkin matrix is computed exactly.

The exact evaluation of the stiffness matrix associated with the bilinear form a(·, ·) in (2.9) can
be very complicated on an interface element when it is cut through by the interface, especially in

three dimensions. A much more convenient formulation is obtained by replacing the original bilinear

form (2.2) with an approximate bilinear form ah(·, ·):

ah(uh,vh) =
∑

K∈T

∫

K
(χK div uh · div vh + βKuh · vh) dx , (2.10)

where the coefficients χK’s and βK’s are elementwise constant. In our present setting of piecewise

constant coefficients, for everyK ∈ T , χK = χi (βK = βi, resp.) ifK ∈ T i or T i
∗ for i ∈ {1, 2}.

With the modified bilinear form in (2.10), we can now define a more practical finite element

method for the variational problem (Q) by replacing a(·, ·) by ah(·, ·).
Problem (Q̃h) Find uh ∈ Fh such that

ah(uh,vh) =

∫

Ω
f · vh dx ∀vh ∈ Fh. (2.11)

It can be immediately seen that the bilinear form ah(·, ·) still preserves coercivity and continuity,
and thus the well-posedness of Problem (Q̃h) is assured. Moreover, the two bilinear forms ah and a
are related to each other by

a(u,v) = ah(u,v) + a∆(u,v), (2.12)

where the residual bilinear form a∆(·, ·) satisfies

|a∆(u,v)| ≤ C‖u‖H(div;Sδ)‖v‖H(div;Sδ), (2.13)

with the constant C depending only on the coefficients χi’s and βi’s.

2.4 Interface-aware interpolation operator

Themodification of the bilinear form for ease of computation of stiffness matrix complicates the error

estimate quite a lot. We have to recover quasi-optimality by taking into account numerical crime. It

is worth remarking that there are no ambiguities of the interpolation operator Πh when applied

for functions in H0(div; Ω) ∩ H
1(div; Ω1) ∩ H

1(div; Ω2), but the corresponding interpolant is
not a good candidate to yield best approximation error estimate. It is worth pointing out that the

original idea to derive error estimate by combining Cea’s lemma with interpolation error estimate of

Πh, which works in H(div; Ω)-elliptic problems, fails in H(div; Ω)-elliptic interface one. Instead
we shall define a problem-specific interface-aware interpolation operator, which can be viewed as

a perturbed version of Πh. The pivotal idea is to define a perturbed degree of freedom for each

interface face of an interface element by a surrogate degree of freedom defined through the interface

twin face. To be more precise, we elucidate the idea in the following definition, cf. [16, Sect. 2.4].

Definition 2.9 (Interface-aware interpolation operators). Let Th be an oriented unstructured tetra-

hedral triangulation satisfying Assumptions 2.1 and 2.3 with mesh size h, and Fh the lowest order

Raviart-Thomas elements on Th.

For a function u ∈ H0(div; Ω) ∩H
1(div; Ω1) ∩ H

1(div; Ω2), we define a perturbed interface-
aware interpolation operator

Π̃h : H0(div; Ω) ∩ H
1(div; Ω1) ∩ H

1(div; Ω2) .→ Fh

9



and its interpolation Π̃h as follows:

∫

f
Π̃hu · n dS =






∫
f u · n dS, if f ∈ Fh is a non-interface face;

∫
f̃ u · n dS, if f ∈ Fh is an interface face associated

with an interface twin face f̃ .

We remark that the interface-aware interpolation operator Π̃h is introduced only for the subse-

quent theoretical error estimates, and it is not needed in the numerical implementation of the finite

element method (Q̃h).

3 Theoretical tools

In this section, we supply some technical results which are indispensable tools for the subsequent

convergence analysis of finite element methods forH(div; Ω)-elliptic interface problems.
We first recall an important inequality, under the same problem setting as in Section 1, which

will be used for the error estimate in the region near the smooth interface. The proof is similar to that

of [19, Lemma 2.1].

Lemma 3.1. Let i ∈ {1, 2}. Then it holds for any zi ∈ H1(Ωi) that

‖zi‖L2(Si
δ) ≤ C

√
δ‖zi‖H1(Ωi),

provided that δ is sufficiently small. Here the constant C depends only on the smooth interface and

the domain Ω.

There is a straightforward corollary to Lemma 3.1 which can be viewed as its vectorized version

inH
1(div) spaces by simply using the Cauchy-Schwarz inequality.

Corollary 3.2 (δ-strip argument). Let i ∈ {1, 2}. Then it holds for any zi ∈ H
1(div; Ωi) that

‖zi‖H(div;Si
δ) ≤ C

√
δ‖zi‖H1(div;Ωi)

provided that δ is sufficiently small. The constant C depends only on the smooth interface and the

domain Ω.

Next, motivated by the construction of extension operators for functions in Sobolev spaces

Hk(Ω) [1, 11], we develop in this subsection a new extension theorem for functions in theH
1(div)

space. This new extension result will play a crucial role in the subsequent error estimate on interface

elements.

It is well-known that (see, e.g., [11, Theorem 1, Sec. 5.4]) for a connected bounded domain in

U ⊂ R3 with C2-smooth boundary there exists a bounded linear extension operator

E : H2(U) → H2(R3)

such that for any scalar function u ∈ H2(U):

1. Eu = u a.e. in U .

2. ‖Eu‖H2(R3) ≤ C‖u‖H2(U) with the constant C depending only on U .

Comparedwith the extension of scalar functions, vector fields must be extended in a more delicate

way to conserve their properties. In [16, Thm. 4.3], the following H
1(curl)-extension theorem is

proved based on the commuting diagram property [15]:

Ecurl(grad p) = grad(Ep). (3.1)

Theorem 3.3 (H1(curl)-extension theorem). Assuming that U is a connected bounded domain in

R3 with C2-smooth boundary. Then there exists a bounded linear extension operator:

Ecurl : H
1(curl; U) → H

1(curl; R3), (3.2)

such that for each u ∈ H
1(curl; U):

10



1. Ecurlu = u a.e. in U .

2. ‖Ecurlu‖H1(curl;R3) ≤ C ‖u‖
H1(curl;U), with the constant C depending only on U .

Analogously, suppose u ∈ H
1(div;U) and we wish to extend u to be a function ũ ∈

H
1(div; R3). Since for a vector-valued functionw ∈ H

1(curl; U)we have curlw ∈ H
1(div;U),

it seems promising to define anH
1(div)-extension operatorEdiv still based on the commuting dia-

gram property [15]:

Ediv(curlw) = curl(Ecurlw). (3.3)

With such motivation, we are now able to show the H
1(div)-extension theorem across the smooth

boundary, whose proof will be given in detail in Appendix A.

Theorem 3.4 (H1(div)-extension theorem). Assume that U is a connected bounded domain in R3

with C2-smooth boundary. Then there exists a bounded linear extension operator:

Ediv : H
1(div;U) → H

1(div; R3) i = 1, 2, (3.4)

such that for each u ∈ H
1(div;U):

1. Edivu = u a.e. in U .

2. ‖Edivu‖H1(div;R3) ≤ C ‖u‖
H1(div;U), with the constant C depending only on U .

For our subsequent analysis, we need the following special version of Theorem 3.4.

Corollary 3.5. There exist two bounded linear operators

Ei
div : H

1(div; Ωi) → H
1(div; Ω) i = 1, 2, (3.5)

such that for each u ∈ H
1(div; Ωi):

1. Ei
divu = u a.e. in Ωi.

2.
∥∥Ei

divu
∥∥

H1(div;Ω)
<∼ ‖u‖

H1(div;Ωi)
.

Proof. Noticing Assumption 2.3 that the interface Γ is C2-smooth, and some slight modification of

the proof of Theorem 3.4 yields the desired result.

The following inequality in a pyramid can be found in [16, Lemma 3.6], and will be applied to

the error estimates in those pyramids with slender bottom faces in the next section.

Lemma 3.6. Let P be a pyramid with F being its quadrilateral bottom face and O its apex (see

Figure 5). Then we have

‖u‖2
L2(F ) ≤

3

d
‖u‖L2(P )(hP ‖gradu‖L2(P ) + ‖u‖L2(P )) ∀u ∈ H1(P ) ,

where d := dist(O, F ), hP := max{|x− y| : x,y ∈ P}. Moreover, if d ∼ O(hP ) and hP < 1, we
have

‖u‖2
L2(F ) ≤ C

(
1

hP
‖u‖2

L2(P ) + ‖gradu‖2
L2(P )

)
∀u ∈ H1(P ) , (3.6)

with C > 0 independent of hP .

4 Convergence analysis

In this section, we show the optimal convergence for theH(div)-elliptic interface problem using the
lowest orderH(div; Ω)-conforming finite element approximation. We first state a technical lemma
to be used for the convergence theorem.
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F
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Figure 5: Sketch of the pyramid in Lemma 3.6.

Lemma 4.1. Let u ∈ H0(div; Ω) ∩ H
1(div; Ω1) ∩ H

1(div; Ω2). Then we have

∑

K∈T 1
∗

‖E1
divu1‖2

H(div;K∩Ω2) ≤ ‖E1
divu1‖2

H(div;S2
δ ) ≤ Cδ‖u1‖2

H1(div;Ω1)
, (4.1)

∑

K∈T 1
∗

‖u2‖2
H(div;K∩Ω2) ≤ ‖u2‖2

H(div;S2
δ ) ≤ Cδ‖u2‖2

H1(div;Ω2) . (4.2)

Analogously,

∑

K∈T 2
∗

‖E2
divu2‖2

H(div;K∩Ω1)
≤ ‖E2

divu2‖2
H(div;S1

δ ) ≤ Cδ‖u2‖2
H1(div;Ω2)

, (4.3)

∑

K∈T 2
∗

‖u1‖2
H(div;K∩Ω1)

≤ ‖u1‖2
H(div;S1

δ ) ≤ Cδ‖u1‖2
H1(div;Ω1) . (4.4)

Proof. We only prove (4.1)–(4.2) since the estimates (4.3)–(4.4) can be shown in exactly the same

manner. To see (4.1), we note ∪K∈T 1
∗
K ∩Ω2 ⊂ S2

δ and that all elements of Th are pairwise disjoint,

the first inequality in (4.1) follows immediately from Assumption 2.3. For the second estimate, using

the Corollary 3.2 and the continuity property of the extension operatorE1
div yields

‖E1
divu1‖2

H(div;S2
δ ) ≤ Cδ‖E1

divu1‖2
H1(div;Ω2) ≤ Cδ‖u1‖2

H1(div;Ω1) .

The estimate (4.2) is obtained analogously by noting the fact that ∪K∈T 1
∗
K ∩ Ω2 ⊂ S2

δ .

To obtain the convergence result, we need to show an appropriate interpolation error estimate

for the interface-aware interpolation operator Π̃h in Definition. 2.9. The following estimate is the

counterpart of [16, Lemma 4.2], with a much more involved proof, however, due to more complicated

geometrical considerations.

Lemma 4.2. Let u ∈ H0(div; Ω) ∩ H
1(div; Ω1) ∩ H

1(div; Ω2). Then we have

∥∥∥u − Π̃hu
∥∥∥

H(div;Ω)
≤ C(h +

√
δ +

δ√
h

)
(
‖u‖

H1(div;Ω1)
+ ‖u‖

H1(div;Ω2)

)
(4.5)

with constant C > 0 depending on ρ(Th), γ(Th) and Ω, but independent of h, δ and u.

Proof. LetK ∈ T 1
∗ . We notice the crucial identity is

Π̃hu
∣∣∣
K

= Π̃hE
1
divu

∣∣∣
K

.
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Then we can decompose the difference u− Π̃hu overK into three parts:

(
u − Π̃hu

)∣∣∣
K

=
(
u− E1

divu
)∣∣

K
+

(
E1

divu− ΠhE
1
divu

)∣∣
K

+
(
ΠhE

1
divu− Π̃hE

1
divu

)∣∣∣
K

.
(4.6)

Noting that u = E1
divu onK ∩ Ω1 and employing Lemma 4.1 leads to

∑

K∈T 1
∗

∥∥u− E1
divu

∥∥2

H(div;K)
=

∑

K∈T 1
∗

∥∥u− E1
divu

∥∥2

H(div;K∩Ω2)

≤ C
∑

K∈T 1
∗

‖u‖2
H(div;K∩Ω2)

+
∑

K∈T 1
∗

∥∥E1
divu

∥∥2

H(div;K∩Ω2)

≤ Cδ ‖u‖2
H1(div;Ω1) .

(4.7)

A classical interpolation result ( [21, Theorem 5.25, pp. 124]) for the standard interpolation op-

eratorΠh and the continuous property of E
1
div give

∑

K∈T 1
∗

∥∥E1
divu − ΠhE

1
divu

∥∥2

H(div;K)
≤ C

∑

K∈T 1
∗

h2
∥∥E1

divu
∥∥2

H1(div;K)

≤ Ch2
∥∥E1

divu
∥∥2

H1(div;Ω)
≤ Ch2 ‖u‖2

H1(div;Ω1)
.

(4.8)

The most challenging issue comes from the third term in the right hand side of (4.6), where we

observe that the only difference between two interpolation functions involved lies in the degrees of

freedom associated with the interface faces of first and second kind. Without loss of generality, let us

consider a typical case, namely picking up the interface element K1 as shown in Figure 4(a) as our

currentK and assuming that most part ofK1 lies in Ω1.

We shall investigate the error estimate in K1 in detail step by step with reference to Figure 4.

First of all, we have by the definition ofΠh and Π̃h

∥∥∥ΠhE
1
divu − Π̃hE

1
divu

∥∥∥
2

H(div;K1)

=

∥∥∥∥∥

(∫

f
E1

divu · d)S −
∫

f̃
E1

divu · d)S

)
bf +

3∑

i=1

(∫

fi

E1
divu · d)S −

∫

f̃i

E1
divu · d)S

)
bfi

∥∥∥∥∥

2

H(div;K1)

Without loss of generality, all basis functionsbfi , i = 1, 2, 3 and bf refer to outgoing fluxes with

normal vectors pointing outward. Here we play the trick to enclose Vf,f̃ by adding Sei,ẽi
, i = 1, 2, 3

to f and −f̃ (which means f̃ with opposite orientation) and subtracting the surplus. Note that for h
sufficiently small, the orientations of f and f̃ are approximately the same as indicated by the outward
normal direction n in Figure 6(a) and (b). Note that the orientations of Sei,ẽi

’s depends only on those

of fi and f̃i.

Then the equality above can be rewritten as the following crucial identity:

∥∥∥∥∥

(∫

f
E1

divu · d)S −
∫

f̃
E1

divu · d)S

)
bf +

3∑

i=1

(∫

fi

E1
divu · d)S −

∫

f̃i

E1
divu · d)S

)
bfi

∥∥∥∥∥

2

H(div;K1)

=

∥∥∥∥∥

(∫

f∪(−f̃)∪Se1,ẽ1
∪Se2,ẽ2

∪Se3,ẽ3

E1
divu · d)S

)

bf +
3∑

i=1

(∫

Sei,ẽi

E1
divu · d)S

)

(bfi − bf )

∥∥∥∥∥

2

H(div;K1)

:= ‖Θ +Λ ‖2
H(div;K1)

An insightful observation of the orientations of f , f̃ , Se1,ẽ1
, Se2,ẽ2

and Se3,ẽ3
enables us to apply
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Figure 6: Orientations of interface (twin) faces.

the divergence law to further estimateΘ.

‖Θ‖2
H(div;K1)

≤ C ‖bf‖2
H(div;K1)

(∫

V
f,f̃

div E1
divu dV

)2

≤ C
1

h3

(∫

V
f,f̃

div E1
divu dV

)2

≤ C
|Vf,f̃ |
h3

(∫

V
f,f̃

| div E1
divu|2 dV

)

,

where we employ the H(div)-estimates for the basis function bf in Lemma 2.8 in the second in-

equality and use the Cauchy-Schwarz inequality in the third one.

Another important observation is the following divergence-free property:

div(bf1

K − b
f2

K ) = 0, (4.9)

where f1, f2 are two different faces of any tetrahedronK with the same orientation, i.e., both pointing

either inward or outward with respect toK . With this in mind, we now estimate Λ as follows:

‖Λ‖2
H(div;K1)

≤ C
3∑

i=1

‖(bfi − bf )‖2
L2(K1)

(∫

Sei,ẽi

E1
divu · d)S

)2

≤ C
3∑

i=1

(
‖bfi‖L2(K1)

+ ‖bf‖2
L2(K1)

)(∫

Sei,ẽi

E1
divu · d)S

)2

≤ C
|Se,ẽ|

h

(∫

Se,ẽ

|E1
divu|2 dS

)

where we employ the L2-estimates for the basis function bf bfi in Lemma 2.8 and use the Cauchy-

Schwarz inequality in the last inequality.

It is pointed out that the local error estimate above is done within an element. The same argument

can be applied for any element patch by combining K1 with adjacent interface elements with no

interface face of the first kind. Hence taking summation over all the interface faces and noticing that

all slender volumes corresponding to the interface faces of the first kind are restricted in the δ-region
with finite overlap due to the quasi-uniformity assumption of the triangulation, i.e.,

⋃

f∈Fh
f⊂Sδ

Vf,f̃ ⊂ Sδ , (4.10)
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thus we obtain

∑

K∈T 1
∗

∥∥∥ΠhE
1
divu− Π̃hE

1
divu

∥∥∥
2

H(div;K)

<∼
∑

K∈T 1
∗




∑

f∈Fh
f⊂K∩Sδ

|Vf,f̃ |
h3

(∫

V
f,f̃

| div E1
divu|2 dV

)

+
∑

e∈Eh
e⊂K∩Sδ

|Se,ẽ|
h

(∫

Se,ẽ

|E1
divu|2 dS

)



<∼
δ

h

∥∥div E1
divu

∥∥2

L2(Sδ)
+

δ

h

∥∥E1
divu

∥∥2

L2(Sδ)
+ δ

∥∥gradE1
divu

∥∥2

L2(Sδ)

<∼ (
δ2

h
+ δ) ‖u‖2

H1(div;Ω1)
.

(4.11)

Here we substitute (2.4) into the first inequality, make use of the inclusion (4.10) and apply

Lemma 3.6 in the second one, and finally employ the δ-strip argument (Corollary 3.2) together with
the continuity of the extension operatorE1

div in the last one.

Now for any non-interface elementK ∈ T 1, u ∈ H
1(div;K) and u− Π̃hu = u−Πhu. Again

a classical interpolation result (cf. [21]) yields

∑

K∈T 1

∥∥∥u− Π̃hu
∥∥∥

2

H(div;K)
=

∑

K∈T 1

‖u− Πhu‖2
H(div;K)

<∼
∑

K∈T 1

h2 ‖u‖2
H1(div;K)

<∼ h2 ‖u‖2
H1(div;Ω1)

(4.12)

Combining (4.6), (4.7), (4.8), (4.11), and (4.12) yields

∑

K∈T 1∪T 1
∗

∥∥∥u− Π̃hu
∥∥∥

2

H(div;K)
<∼ (

δ2

h
+ δ + h2) ‖u‖2

H1(div;Ω1) (4.13)

Completely analogously, we repeat the previous argument by interchanging the indices from 1
to 2 and arrive at the error estimate for any K ∈ T 2 ∪ T 2

∗ . The desired error estimate results from

combining the two parts of contribution, which completes our proof.

Now we are in a position to state our main theorem about the optimal convergence of Galerkin

solutions ofH(div)-elliptic interface problems by face elements.

Theorem 4.3. Let u and uh be the solutions to problems (Q) and (Q̃h), respectively, and assume
u ∈ H0(div; Ω) ∩ H

1(div; Ω1) ∩ H
1(div; Ω2). Then we have the following error estimate under

Assumptions 2.1 and 2.3:

‖u− uh‖H(div;Ω) ≤ Ch(‖u‖
H1(div;Ω1) + ‖u‖

H1(div;Ω2)
) (4.14)

with constant C > 0 depending on χi’s, βi’s, ρ(Th), γ(Th) and Ω, but independent of h, δ and u.

Proof. We apply the first Strang lemma (see, e.g., [10], Theorem 4.1.1) to (2.9) and (2.11)

‖u− uh‖H(div;Ω) ≤ C inf
wh∈Fh

{
‖u−wh‖H(div;Ω) + sup

vh∈Fh

|a(wh,vh) − ah(wh,vh)|
‖vh‖H(div;Ω)

}
. (4.15)

In particular, we choosewh = Π̃hu. By Lemma 4.2 we have

‖u− Π̃hu‖H(div;Ω) ≤ C(
δ√
h

+ h +
√

δ)
(
‖u‖

H1(div;Ω1)
+ ‖u‖

H1(div;Ω2)

)
. (4.16)
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Next, for any vh ∈ Fh we can derive by using Lemma 4.1 and Corollary 3.2 that

|a∆(Π̃hu,vh)| ≤ C ‖Π̃hu‖H(div;Sδ)‖vh‖H(div;Sδ)

≤ C
(
‖u‖H(div;Sδ) + ‖u− Π̃hu‖H(div;Sδ)

)
‖vh‖H(div;Sδ)

≤ C (
√

δ + h +
δ√
h

)
(
‖u‖

H1(div;Ω1) + ‖u‖
H1(div;Ω2)

)
‖vh‖H(div;Ω) ,

which implies that

sup
v∈Fh

|a∆(Π̃hu,vh)|
‖vh‖H(div;Ω)

≤ C(
√

δ + h +
δ√
h

)
(
‖u‖

H1(div;Ω1)
+ ‖u‖

H1(div;Ω2)

)
. (4.17)

The desired estimate now follows from Assumption 2.3 by substituting δ ∼ O(h2) into wherever δ
occurs in (4.15)-(4.17) and plugging (4.16)-(4.17) into (4.15).

Remark 4.4. The optimal convergence result in Theorem 4.3 does not address the impact of coef-

ficients, which is implicitly taken into account in the generic constant C. Actually the relative size
ratio of coefficients could have enormous effect in the numerical computation, especially when it is

extremely large or small. This issue is beyond the scope of our current work and will be addressed in

the future.

5 Numerical experiments

In this section, we conduct numerical test to verify the theoretical prediction of the convergence

analysis developed in previous sections. Our numerical experiments are implemented using MAT-

LAB combined with the commercial package FEMLAB. We will test the first family of Nédélec face

elements of the lowest order. It is remarked that we use non-nested families of triangulations in order

to make sure they are interface-aware. Note that after each step of mesh refinement, some regularly

refined interface elements have to be slightly adjusted to meet the interface-aware condition.In the se-

quel, we will test the convergence rates for the relative error in theH(div; Ω)-norm which is defined
by

RelativeH(div; Ω) error :=
‖u− uh‖H(div;Ω)

‖u‖
H(div;Ω)

, (5.1)

and relative error in the energy norm, namely,

Relative energy error :=
‖u− uh‖a

‖u‖a
. (5.2)

Note that bothH(div; Ω) and energy norms are numerically computed using a fourth order quadra-
ture rule.

Example 5.1. The computational domain is taken to be a ball Ω = {(x, y, z); x2 + y2 + z2 ≤ r2},
and the interface Γ is a spherical surface {(x, y, z); x2+y2+z2 = r1}. The exact solutionu(x, y, z)
is given by

u(x, y, z) =






1

χ1
u1(x, y, z), if x2 + y2 + z2 ≤ r1 ;

1

χ2
u2(x, y, z), if r1 < x2 + y2 + z2 ≤ r2 ,

(5.3)

where u1(x, y, z) is given by




(y − z) + n1(r2

1 − x2 − y2)(z − x) − n1(r2
1 − x2 − y2)(x − y)

−n1(r2
1 − x2 − y2)(y − z) + (z − x) + n1(r2

1 − x2 − y2)(x − y)
n1(r2

1 − x2 − y2)(y − z) − n1(r2
1 − x2 − y2)(z − x) + (x − y)




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and u2(x, y, z) by




(y − z) + n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)(z − x) − n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)(x − y)

−n2(r2
1 − x2 − y2)(r2

2 − x2 − y2)(y − z) + (z − x) + n2(r2
1 − x2 − y2)(r2

2 − x2 − y2)(x − y)
n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)(y − z) − n2(r2

1 − x2 − y2)(r2
2 − x2 − y2)(z − x) + (x − y)





For this example, we fix r1 = 1, r2 = 2, n2 = 20, n1 = n2(r2
2 − r2

1), β1 = β2 = 1 and
derive the source functions f through the equation (1.1) for different pairs of χ1 and χ2, using the

exact solution (5.3) which satisfies the homogeneous boundary condition and jump conditions on

the interface. Numerical convergence tests are carried out to analyze the rates of the error decay

using lowest order face elements of the first family. We start our tests on a rather coarse mesh with

maximun mesh size h = 2 and then refine the mesh in a regular and uniform way which subdivides
a coarse element into eight smaller ones. The refinement process will be done for three consecutive

times which amounts to 2, 568, 192 degrees of freedom at the finest mesh with mesh size h = 0.125.

A slice view of the interface-aware mesh are shown in Figure 7 (a). From Figure 7 (b) with

χ1 = 1 and χ2 = 10, it can be clearly seen that as the mesh gets finer and finer, the line of the
convergence rate tends to be parallel to the reference line of first order convergence in terms of the

mesh size. More precisely, in the asymptotic sense, face elements indeed yield the optimal first order

convergence in theH(div; Ω) norm as predicted by theory. Next, we adjust the relative jump of the
coefficients χ2/χ1 to be 103 and 10−3, respectively, and also plot the corresponding convergence

rates in Figure 7 (c) and Figure 7 (d). Similar observations with asymptotic tendency of first order

convergence rate with respect to the meshsize further consolidate our theoretical result.
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Figure 7: (a): A sample slice view of the triangulation of interface-aware mesh in

3D; (b): The convergence rate when χ1 = 1, χ2 = 10; (c): The convergence rate
when χ1 = 1, χ2 = 103; (d): The convergence rate when χ1 = 1, χ2 = 10−3.
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Last, we test the relation between the relative error in the energy norm and relative jump of the

coefficients χ2/χ1. On a typical fine mesh with mesh size h = 0.1232 with 4,396,225 degrees of
freedom. We increase the relative jump of coefficients from 10−8 to 108 by fixing χ1 or χ2 to be

unity and plot the corresponding relative energy error curve versus the relative jump in Figure 8, It

can be seen that the numerical solution converges quite robustly in the sense of energy norm with

respect to the relative jump of coefficients.
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Figure 8: Relative error in the energy norm versus relative jump of coefficients for

a fine triangulation with meshsize h = 0.1232 in Example 5.1.

6 Conclusion

We have analyzed the convergence of the H(div; Ω)-conforming finite element method for
H(div; Ω)-elliptic interface problems based on families of interface-aligned meshes. The difficulty
mainly arises from the discontinuity of the coefficient in the second order term of equation (1.1). Op-

timal convergence results inH(div; Ω)-norm are obtained under reasonable regularity assumptions.
With this work, we have completed the finite element convergence analysis for standard second order

elliptic interface problems [19],H(curl; Ω)-elliptic interface problems [16] andH(div; Ω)-elliptic
interface problems (this work). Optimal rates can be established for each case.
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A Appendix

Proof of Theorem 3.4. 1. We first prove the half ball extension following [1, 25].

For a fixed x0 ∈ Γ, we first suppose that ∂U is flat near x0 which is lying in the plane {x |
x3 = 0}. We assume that there exists an open ball B = {x; |x − x0| < r} with center x0 and

radius r > 0 such that {
B+ := B ∩ {x3 ≥ 0} ⊂ U,
B− := B ∩ {x3 < 0} ⊂ R3 \ U.

2. Suppose p ∈ C
∞(U ). We define aH

1(curl) reflection of p from B+ to B−.

p̃ =






p(x), if x ∈ B+;



∑3

j=1
λjp

1(x1, x2,−
x3

j
)

∑3

j=1
λjp

2(x1, x2,−
x3

j
)

∑3

j=1
−λj

j
p3(x1, x2,−

x3

j
)




, if x ∈ B−.

(A.1)

where (λ1, λ2, λ3) are the unique solutions of the 3 × 3 system of linear equations

3∑

j=1

(−1

j
)kλj = 1, k = 0, 1, 2, (A.2)

which has the unique solution (λ1, λ2, λ3) = (6,−32, 27). It is readily checked that

p̃ ∈ C
1(B) .

Now we define a reflection of curl p from B+ to B− in view of (3.3).

c̃url p =

{
curl p, if x ∈ B+;

curl p̃, if x ∈ B−,
(A.3)

or

c̃url p =









p3

x2
− p2

x3

p1
x3

− p3
x1

p2
x1

− p1
x2



 , if x ∈ B+;





∑3

j=1
−λj

j
p3

x2
(x1, x2,−

x3

j
) −

∑3

j=1
−λj

j
p2

x3
(x1, x2,−

x3

j
)

∑3

j=1
−λj

j
p1

x3
(x1, x2,−

x3

j
) −

∑3

j=1
−λj

j
p3

x1
(x1, x2,−

x3

j
)

∑3

j=1
λjp

2
x1

(x1, x2,−
x3

j
) −

∑3

j=1
λjp

1
x2

(x1, x2,−
x3

j
)




, if x ∈ B−.

(A.4)

Comparing the components of c̃url p in (A.4) in B+ and B−, we derive a tentative extension

formula for a vector-valued functionw = (w1, w2, w3)t ∈ C
∞(B+) as follows:

w̃(x) =




w̃1(x)

w̃2(x)

w̃3(x)



 :=






w(x), if x ∈ B+;



∑3

j=1
−λj

j
w1(x1, x2,−

x3

j
)

∑3

j=1
−λj

j
w2(x1, x2,−

x3

j
)

∑3

j=1
λjw

3(x1, x2,−
x3

j
)




, if x ∈ B−.

(A.5)

3. We claim w̃ ∈ C
1(B) and thus div w̃ ∈ C0(B). This can be demonstrated by a detailed

computation. Indeed according to (A.5) and (A.2),

lim
x3→0+

w̃i(x) = lim
x3→0−

w̃i(x) i = 1, 2, 3, (A.6)

lim
x3→0+

w̃i
xj (x) = lim

x3→0−
w̃i

xj (x) i, j = 1, 2, 3. (A.7)
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4. We prove

‖w̃‖
H1(div;B) ≤ C ‖w‖

H1(div;B+) . (A.8)

In fact, by the definition of w̃ we can derive

∫

B
|w̃(x)|2 dx =

∫

B+

|w(x)|2 dx +

∫

B−

|
∑3

j=1

λj

−j
w1(x1, x2,−

x3

j
)|2 dx

+

∫

B−

|
∑3

j=1

λj

−j
w2(x1, x2,−

x3

j
)|2 dx +

∫

B−

|
∑3

j=1
λjw

3(x1, x2,−
x3

j
)|2 dx

≤ C

∫

B+

|w(x)|2 dx ,
∫

B
|grad w̃(x)|2 dx

=
3∑

i=1

3∑

k=1

∫

B+

|wi
xk

(x)|2 dx +
3∑

k=1

∫

B−

|
∑3

j=1

λj

−j
w1

xk
(x1, x2,−

x3

j
)|2 dx

+
3∑

k=1

∫

B−

|
∑3

j=1

λj

−j
w2

xk
(x1, x2,−

x3

j
)|2 dx +

3∑

k=1

∫

B−

|
∑3

j=1
λjw

3
xk

(x1, x2,−
x3

j
)|2 dx

≤ C

∫

B+

|gradw(x)|2 dx ,
∫

B
| div w̃(x)|2 dx =

∫

B+

|w1
x1

(x) + w2
x2

(x) + w3
x3

(x)|2 dx

+

∫

B−

|
∑3

j=1

λj

−j
w1

x1
(x1, x2,−

x3

j
) +

∑3

j=1

λj

−j
w2

x2
(x1, x2,−

x3

j
)

+
∑3

j=1

λj

−j
w3

x3
(x1, x2,−

x3

j
)|2 dx

≤ C

∫

B+

| div w(x)|2 dx ,
∫

B
|graddiv w̃(x)|2 dx

=
3∑

k=1

∫

B+

|w1
x1,xk

(x) + w2
x2,xk

(x) + w3
x3,xk

(x)|2 dx

+
3∑

k=1

∫

B−

|
∑3

j=1

λj

−j
w1

x1,xk
(x1, x2,−

x3

j)(k+1)/2*
) +

∑3

j=1

λj

−j
w2

x2,xk
(x1, x2,−

x3

j)(k+1)/2*
)

+
∑3

j=1

λj

−j
w3

x3,xk
(x1, x2,−

x3

j)(k+1)/2*
)|2 dx

≤ C

∫

B+

|graddiv w(x)|2 dx .

The estimate (A.8) now follows readily from the above four inequalities.

5. If ∂U is not flat near x0, we can find a C2-mapping Φ, with the inverse Φ−1, such that Φ
flattens ∂U near x0. We can write y = Φ(x), x = Φ−1(y), and v(y) := w(Φ−1(y)).
Choosing a small ball B and arguing as in the previous steps, we can extend v from B+ to a

function ṽ defined in B such that ṽ ∈ C
1(B) and thus curl ṽ ∈ C

0(B) and the following
estimate holds for any v ∈ H

1(div;B+),

‖ṽ‖
H1(div;B) ≤ C ‖v‖

H1(div;B+) . (A.9)

LettingW := Φ−1(B), W+ := Φ−1(B+) and converting back to the x-variable, we have

‖ṽ‖
H1(div;W ) ≤ C ‖v‖

H1(div;W+) . (A.10)
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6. Due to the compactness of ∂U , there exist finitely many open ballsWi, i = 1, 2, . . . , N such

that ∂U ⊂
⋃N

i=1 Wi. Take W0 ⊂⊂ U such that U ⊂
⋃N

i=0 Wi. Let {θi}N
i=0 be a partition

of unity associated with Wi, i = 0, 1, 2, . . . , N . For any given smooth w =
∑N

i=0 wi with

wi = θiw, let w̃ = w0 +
∑N

i=1 w̃i, where w̃i are extensions of wi defined in Wi for i =
1, 2, . . . , N . Replacing ṽ and v in (A.10) with w̃i andwi, respectively, and taking summation

from 0 to N we obtain

‖w̃‖
H1(div;R3) ≤ C ‖w‖

H1(div;U) . (A.11)

for some constant C depending on U but not onw.

7. Hereafter we define an extension operator

Edivw = w̃

and observe that the mapping w .→ Edivw is linear. Using the density of C
∞(U) in

H
1(div;U), we can verify that the operatorEdiv is what we desire.
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Asymptotics for Helmholtz and Maxwell solutions in 3-D open
waveguides

10-06 C. Schwab and O. Reichmann
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