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Abstract

We propose a mixed boundary element method for the eddy current problem.
It involves two divergence conforming tangent fields on the surface. The
zero divergence condition on one of them is enforced with scalar Lagrange
multipliers. An LBB Inf-Sup condition is proved for the resulting discrete
saddle-point problem, leading to quasi-optimal convergence rates.



Introduction

The simulation of electromagnetic devices operating at low frequencies is of
practical interest to many engineering problems such as the design of electric
engines. A basic problem is to determine the total electromagnetic field sur-
rounding a conductor subject to a known electromagnetic excitation. At low
frequencies the eddy current model provides a satisfactory approximation of the
full Maxwell equations (Ammari, Buffa, Nédélec [1]).

The use of the free-space Green’s kernel reduces these equations to integral
equations on the surface of the conductor (which might not be connected).
Among the many possible choices of integral equations we will use the so-called
E-based one. It requires the discretization of divergence-free tangent fields on
the surface. Since we are interested in objects with arbitrary topology these are
not all rotationals. While Hiptmair [17] uses an explicit (but costly) construction
of a supplementary of the space of rotationals in the kernel of the divergence
operator, we enforce the constraint on the divergence using Lagrangemultipliers.
Moreover our proof of stability of the discretization is different from Hiptmair’s.

Our analysis is based on the use of discrete Hodge decompositions which for
the analysis of integral equations on smooth surfaces was suggested in Chris-
tiansen [12]. In most industrial applications the surface is only piecewise smooth,
therefore we use also a functional framework proposed by Buffa and Ciarlet [8]
and Buffa, Costabel and Sheen [9]. These two techniques have already been suc-
cessfully combined to study the electric field integral equation both on closed
and open surfaces, by Hiptmair and Schwab [18] and Buffa and Christiansen [7].
In addition to these techniques we will use a symmetry argument very similar
to the one used in Buffa, Hiptmair, Petersdorff and Schwab [11].

The paper is organized as follows. First we recall the functional setting we
will use. Then we provide a quick derivation of the integral equations. Then we
turn to their variational formulation, as a saddlepoint problem and show that it
is Fredholm. Finally we turn to the Galerkin discretization of this saddlepoint
problem and prove the dicrete inf-sup condition under natural hypotheses.

1 Preliminaries

Let Ω− be a bounded Lipschitz domain in R3. For simplicity we suppose fur-
thermore that Ω− is a piecewise flat polyhedron. It models the conductor. We
denote by Γ its surface, and by Ω+ the exterior domain. The unit length outward
pointing orthogonal vector field on Γ is denoted by n.

For any k ∈ C, let Φk denote the single layer potential associated with the
operator −∆ + k2. That is, for any field u on Γ, Φku is the field on R3 \ Γ
defined by:

(Φku)(y) =

∫

Γ

e−k|x−y|

4π|x− y|
u(x)dsx. (1)

Let γ denote the trace operator on Γ, which is defined on smooth functions
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by:
γ : u #→ u|Γ. (2)

On Γ, Sobolev spaces Hs(Γ) can be defined by local charts and dualization, for
s ∈ [−1; 1], see e.g. Costabel [16]. One shows that γ has a unique continuous
extension to a surjective map:

γ : H1(R3) → H1/2(Γ). (3)

Following Buffa, Ciarlet [8] and Buffa, Costabel and Sheen [9] we recall the
functional framework for traces of vector fields. On vector fields we denote by
γT the tagential trace operator:

γT : u #→ u|Γ − (u|Γ · n)n. (4)

We define the space L2
T
(Γ) by:

L2
T
(Γ) = {u ∈ L2(Γ)3 : u · n = 0}. (5)

The operator γT has a unique extension to a continuous map H1(R3)3 → L2
T
(Γ)

and we denote by H1/2
T (Γ) the range of this extension.

When considering traces of fields defined in Ω− or Ω+ we use the notation
γ−

T
and γ+

T
. We also define γ×, γ

−
× , and γ+

× by composing γT, γ−
T
, and γ+

T
with

the rotation operator (·× n). Thus we have for smooth fields u:

γ×u = u× n. (6)

For s > 1 we denote by Hs(Γ) the subspace of H1(Γ) consisting of traces
of Hs+1/2(R3). The gradient operator is defined as a continuous map gradΓ :

H1(Γ) → L2
T
(Γ). It maps H3/2(Γ) to H1/2

T (Γ), continuously. We denote by divΓ
the adjoint operator, which is thus continuous L2

T
(Γ) → H−1(Γ), and H1/2

T (Γ)′ →
H3/2(Γ)′.

We denote by X the space:

X = {u ∈ H1/2
T (Γ)′ : divΓ u ∈ H1/2(Γ)′}. (7)

We denote by ∆Γ the Laplace-Beltrami operator defined as the composition
divΓ ◦ gradΓ : H1(Γ) → H−1(Γ). Let P : X → L2

T
(Γ) be the map which to any

u ∈ X associates gradΓ p where p is a solution of:

∆Γp = divΓ u. (8)

Proposition 1.1 The map P determines a continuous projector X → X. In
particular we have a direct sum:

X = V ⊕W. (9)

where W is kernel of P, which is also the kernel of the divergence operator, and
V is the range of P .There is C > 0 such that:

∀u ∈ V ‖u‖X ≤ C| div u|H−1/2(Γ) (10)

Moreover the injection of V into H1/2
T (Γ)′ is compact.
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–Proof: The norm estimate follows from the fact that divΓ : X → H−1/2(Γ)
has closed range, ans is injective on V hence determines an isomorphism from
V onto its range. The compactness follows from the fact that the injection of

H1/2
T (Γ) into L2

T
(Γ) is compact. !

One shows that γ−
× and γ+

× have unique continuous extensions to maps:

Hcurl(Ω−) → X and Hcurl(Ω+)loc → X (11)

respectively, and that these extensions are surjective. Moreover γ−
T
, γ+

T
have

unique continuous extensions to maps:

Hcurl(Ω−) → X ′ and Hcurl(Ω+)loc → X ′ (12)

Moreover the operator (·× n) extends to isomorphisms X → X ′ and X ′ → X .
We define an operator Ck on tangent fields on X by:

Cku = (1/2)(γ−
T
+ γ+

T
) curlΦku. (13)

Proposition 1.2 The operator Ck is well-defined and continuous X → X ′.
Moreover:

γ±
T
curlΦku = ±u× n+ Cku, (14)

Ck − C0 is compact X → X ′ and C0 is symmetric.

–Proof: We first remark that for any u ∈ X we have in Ω− ∪ Ω+:

curl curlΦku = (graddiv−∆)Φku = gradΦk divΓ u− k2Φku. (15)

The continuity of Ck and compactness of Ck −C0 then follow straightforwardly
from the mapping properties of the singlelayer potential. The trace relations
follow from the jump formulas, see e.g. [13] p. 145.

We now turn to the symmetry of C0. The proof is a variant of the proof of
Theorem 3.9 in [11], whcih dealt with the case of positive frequencies.

Choose u and v in X . Put:

γ−
T
curlΦ0u = a , γ+

T
curlΦ0u = a′, (16)

γ−
T
curlΦ0v = b , γ+

T
curlΦ0v = b′. (17)

One checks that for any bilinear form c on X one has:

c ((a− a′), 1/2(b+ b′)) + c (1/2(a+ a′), (b− b′)) = c(a, b)− c(a′, b′) (18)

We denote by 〈·, ·〉 the dualities of Sobolev spaces on Γ. We have:

〈C0u, v〉 = 〈1/2(a+ a′), (b − b′)× n〉 (19)

= −〈(a− a′), 1/2(b+ b′)× n〉+ 〈a, b× n〉 − 〈a′, b′ × n〉 (20)

= 〈C0v, u〉+ 〈a, b× n〉 − 〈a′, b′ × n〉. (21)
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For any R > 0 let BR be the ball with radius R and senter 0, let SR be the
corresponding sphere and let nR be the outward normal on SR. For any R such
that Ω− ⊂ BR we can perform the following integrations by parts in Ω+ ∩BR:

−〈a′, b′ × n〉 (22)

=

∫

Ω+∩BR

curl curlΦ0u · curlΦ0v − curlΦ0u · curl curlΦ0v

−
∫

SR

curlΦ0u · curlΦ0v × nR (23)

=

∫

Ω+∩BR

gradΦ0 divΓ u · curlΦ0v − curlΦ0u · gradΦ0 divΓ v

−
∫

SR

curlΦ0u · curlΦ0v × nR (24)

= 〈γ+
T
gradΦ0 divΓ u, (γ

+
T
Φ0v)× n〉+ 〈γ+

T
Φ0u, (γ

+
T
gradΦ0 divΓ v)× n〉

−
∫

SR

gradΦ0 divΓ u, (Φ0v)× nR + Φ0u · (gradΦ0 divΓ v)× nR

−
∫

SR

curlΦ0u · curlΦ0v × nR (25)

The properties of the single layer potential yield:

|Φ0u| = O(1/|x|) (26)

| gradΦ0 divΓ u| = O(1/|x|2) (27)

| curlΦ0u| = O(1/|x|2) (28)

Thus we can consider the limit as R → ∞:

−〈a′, b′ × n〉 = (29)

〈γ+
T
gradΦ0 divΓ u, (γ

+
T
Φ0v)× n〉+ 〈γ+

T
Φ0u, (γ

+
T
gradΦ0 divΓ v)× n〉

In the interior domain Ω− we apply the same integration by parts formula.
Since the orientation of n appears twice, the signs cancel and we obtain:

−〈a, b× n〉 = (30)

〈γ−
T
gradΦ0 divΓ u, (γ−

T
Φ0v)× n〉+ 〈γ−

T
Φ0u, (γ

−
T
gradΦ0 divΓ v)× n〉

Noticing that the singlelayer does not jump across Γ, nor the tangential com-
ponent of its gradient, we obtain:

〈a′, b′ × n〉 = 〈a, b× n〉. (31)

This yields the symmetry of C0. !

We will also use a normal trace operator defined on smooth vector fields by:

γn : u #→ u|Γ · n. (32)

It has unique continuous extensions to a linear maps Hdiv(Ω±) → H−1/2(Γ).
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2 E-based boundary integral equation for the

eddy current problem

The eddy current problem is to find the electromagnetic field (E,H) solution
of:

curlE = −iµrH in R
3, (33)

curlH =

{

τ2E in Ω−,
Js in Ω+.

(34)

where µr = 1 in Ω+, τ > 0 and, for simplicity, Js is a divergence-free excitation
with compact support in Ω+. Moreover we impose the decay conditions:

E(x) = O(1/|x|) and H(x) = O(1/|x|). (35)

Define Es by:

Es(x) = −i

∫

R3

Js(y)

4π|x− y|
dy. (36)

Then the eddy current problem can be reformulated as the following trans-
mission problem for the electric field E:

curl curlE + iτ2µrE = 0 in Ω−, (37)

curl curlU = 0, divU = 0 in Ω+, (38)

γ−
T
E − γ+

T
U = γ−

T
Es, (39)

(1/µr)γ
−
T
curlE − γ+

T
curlU = γ−

T
curlEs, (40)

where E is recovered in Ω+ as E = U+Es. This system of equations is supplied
with the decay condition:

U/(1 + |x|2)1/2 ∈ L2(Ω+)
3 and curlU ∈ L2(Ω+)

3. (41)

Define κ by:
κ = (

√
2/2)(1 + i)τ

√
µr, (42)

so that we have:
iτ2µr = κ2. (43)

In the interior domain Ω− we have:

curl curlE + κ2E = 0. (44)

from which one deduces the following representation formula:

E = (1− 1/κ2 graddiv)Φκγ
−
× curlE + curlΦκγ

−
×E. (45)

It gives the following two identities:

γ−
T
E = γ−

T
(1− 1/κ2 graddiv)Φκγ

−
× curlE + 1/2γ−

T
E + Cκγ

−
×E, (46)
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and:

γ−
T
curlE = 1/2γ−

T
curlE + Cκγ

−
× curlE + γ−

T
(−κ2 + graddiv)Φκγ

−
×E. (47)

In the exterior domain Ω+ we have:

∆U = 0 and divU = 0, (48)

which gives the representation formula:

U = −Φ0γ
+
× curlU − gradΦ0γ

+
n U − curlΦ0γ

+
×U. (49)

Since γ+
T
◦ grad = gradΓ ◦γ+, it follows that:

γ+
T
U = −γ+

T
Φ0γ

+
× curlU − gradΓ γ

+Φ0γ
+
n U + 1/2γ+

T
U − C0γ

+
×U, (50)

and since curl grad = 0 and ∆ = graddiv− curl curl we also have:

γ+
T
curlU = 1/2γ+

T
curlU − C0γ

+
× curlU − γ+

T
graddivΦ0γ

+
×U. (51)

Substracting (50) from (46), with the transmission condition (39), and test-
ing against divergence-free µ gives:

〈γ−
T
Φκγ

−
× curlE + Cκγ

−
×E, µ〉+

〈γ+
T
Φ0γ

+
× curlU + C0γ

+
×U, µ〉 = 〈(1/2)γTEs, µ〉. (52)

Substracting (51) from 1/µr(47) and using with the transmission condition
(40) gives:

1/µr

(

Cκγ
−
× curlE + γ−

T
(−κ2 + graddiv)Φκγ

−
×E

)

+

C0γ
+
× curlU + γ−

T
graddivΦ0γ

+
×U = (1/2)γT curlEs. (53)

We now introduce the quantities:

u = γ−
×E, (54)

λ = 1/µrγ
−
× curlE. (55)

We remark first that λ is divergence-free. Indeed by (40) we have:

divΓ λ = γ+
n curl curlU + γn curl curlEs (56)

= γn(graddiv−∆)Es = 0. (57)

In the above equations (52) and (53) we eliminate γ+
×U and γ+

× curlU us-
ing the transmission conditions (39) and (40). Put into variational form these
equations give rise to the system:

{

u ∈ X
λ ∈ W

{

∀v ∈ X a(u, v) + c(λ, v) = f(v)
∀µ ∈ W c(µ, u) + b(λ, µ) = g(µ)

(58)
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where the bilinear forms are given on smooth fields by:

a(u, v) = −
∫∫

(1/µr)Gκ(x, y)
(

divΓ u(x) divΓ v(y) + κ2u(x) · v(y)
)

dsxdsy

−
∫∫

G0(x, y) divΓ u(x) divΓ v(y)dsxdsy, (59)

b(λ, µ) = +

∫∫

(µrGκ(x, y) +G0(x, y))λ(x)µ(y)dsxdsy, (60)

c(λ, v) = 〈(Cκ + C0)λ, v〉, (61)

and extended to X and W by continuity.
The right hand sides are given by:

f(v) = 〈(−1/2(·× n) + C0)γ× curlEs, v〉 − 〈γΦ0 divΓ γ×Es, divΓ v〉, (62)
g(µ) = 〈(−1/2(·× n) + C0)γ×Es, µ〉 − 〈γTΦ0γ× curlEs, µ〉. (63)

3 Fredholm property of the integral equations

Let d be the bilinear form on X ×W defined by:

d ((u,λ), (v, µ)) = a(u, v) + c(λ, v) + c(µ, u) + b(λ, µ). (64)

Let Θ be the isomorphism (u,λ) → (−Pu− 1/κ2(I − P )u,λ). The analysis
of the system (58) relies on:

Proposition 3.1 There is a compact bilinear form k on X ×W such that for
a C > 0 it holds:

Re(d+ k)((u,λ),Θ(u,λ)) ≥ 1/C‖(u,λ)‖2X×W . (65)

–Proof: We denote by s the bilinear form associated with the single layer
operator, both on scalar and on vector fields. Thus for scalar fields:

s(p, q) =

∫∫

Gκ(x, y)p(x)q(y)dsxdsy. (66)

For any u ∈ X consider its decomposition u = uV +uW with uV = Pu ∈ V and
uW = (I − P )u ∈ W . Associate with it v = −uV − 1/κ2uW . Then we have:

a(u, v) = (1/µr + 1)s(divΓ u
V , divΓ u

V ) + (1/µr)s(u
W , uW ) (67)

+(κ2/µr)
(

s(uV , uV ) + s(uV , 1/κ2uW ) + s(uW , uV )
)

. (68)

It follows from the compactness of the injection V → H1/2
T (Γ)′ (Proposition

1.1), that all the terms on line (68) are compact. Moreover it follows from the
coercivity on H−1/2(Γ) of the single layer operator that, up to compact bilinear
forms, the sum of the terms on line (67) is coercive on X .
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Using also µ = λ we have:

c(λ, v) + c(µ, u) = c(λ,−uV ) + c(λ, uV ) + c(λ,−1/κ2uW ) + c(λ, uW ). (69)

It follows from the symmetry of C0 (Proposition 1.2 and the compactness of
Cκ − C0 that the sum of the first two terms is, up to a compact term, purely
imaginary. Moreover the two last terms are compact. !

It follows that if d is left injective then it determines an isomorphism X ×
W → (X ×W )" and we have the Inf-Sup estimate:

inf
(u,λ)∈X×W

sup
(v,µ)∈X×W

|d((u,λ), (v, µ))|
‖(u,λ)‖‖(v, µ)‖

> 0, (70)

where ‖ · ‖ denotes the standard norm on X ×W .
Aiming at the discretization of this equation, we remark that it is in general

a hard problem to construct explicit subspaces of W , when Γ is allowed to
have arbitrary topology. In particular the algorithm proposed by Hiptmair [17]
involves an N2 algorithm to determine surface cycles of trianglulations with N
vertices. This is far more than the N(logN)a complexity of multipole matrix-
vector products.

We therefore chose to enforce the condition that λ ∈ W with Lagrange
multipliers. Let (Γi)i∈I be the family of connected components of Γ. Let Y
denote the space:

Y = {q ∈ H−1/2(Γ) : ∀i ∈ I 〈q, 1〉Γi = 0}. (71)

Notice first that Y = divΓ X and that if q ∈ Y , if u ∈ V is the solution of
divΓ u = q then by Proposition 1.1 we have an estimate of the form ‖u‖X ≤
C‖q‖Y .

Next let s0 be the bilinear form obtained by substituting 0 for κ in s. We
define a form e by:

e((u,λ), q) = s0(divΓ λ, q). (72)

By the coercivity of s0 on H−1/2(Γ) it follows that we have the Babuska-Brezzi
compatibility estimate:

inf
q∈Y

sup
(u,λ)∈X×X

|e((u,λ), q)|
‖(u,λ)‖ ‖q‖

> 0. (73)

We extend d from a bilinear form on X×W to one on X×X by keeping the
expressions (59), (60) and (61) in the definition (64) of d. The original problem
(58) is equivalent to one of the form: find (u,λ) ∈ X ×X and q ∈ Y , such that:

{

∀(v, µ) ∈ X ×X d((u,λ), (v, µ)) + e((v, µ), q) = l((v, µ))
∀p ∈ Y e((u,λ), p) = 0

(74)

Here l((v, µ)) = f(v) + g̃(µ) where g̃ is any continuous extension of g from W
to X . By the above Inf-Sup conditions it follows from Nicolaides’ [22] theorem
that this problem is uniquely solvable when d is left injective.

Notice that for our purposes, in (72), s0 can be replaced by any bilinear form
which is coercive on H−1/2(Γ).
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4 Discrete Inf-Sup condition

Suppose we have Galerkin spaces Xh ⊂ X and Yh ⊂ Y . Then we consider the
problem of finding (u,λ) ∈ Xh ×Xh and q ∈ Yh, such that:

{

∀(v, µ) ∈ Xh ×Xh d((u,λ), (v, µ)) + e((v, µ), q) = l((v, µ))
∀p ∈ Yh e((u,λ), p) = 0

(75)

In general this problem does not satisfy discrete uniform Inf-Sup conditions.
Therefore we shall make some additional assumptions on Xh and Yh. First we
suppose that:

Yh = divΓ Xh = {divΓ u : u ∈ Xh}. (76)

Furthermore we define:

Wh = {u ∈ Xh : divΓ u = 0} (77)

and:

Vh = {u ∈ Xh : ∀w ∈ Wh

∫

u · w = 0}. (78)

Then we have:
Xh = Vh ⊕Wh, (79)

but in general Vh is not a subspace of V .
Recall that for any two closed subspaces X0 and X1 of X the gap δ(X0, X1)

is defined by:
δ(X0, X1) = sup

u0∈X0

inf
u1∈X1

‖u0 − u1‖/‖u0‖. (80)

We say that the family (Xh) of spaces is approximating if:

∀u ∈ X lim
h→0

inf
uh∈Xh

‖u− uh‖ = 0. (81)

Theorem 4.1 If d is left injective, (Xh) is approximating and δ(Vh, V ) → 0
then the system (75) satisfies uniform discrete Inf-Sup conditions for small
enough h.

–Proof: (i) Compatibility condition: Let P be the projector onto V parallel to
W . Then we have:

∀uh ∈ Vh ‖uh‖ ≤ ‖uh − Puh‖X + ‖Puh‖ (82)

≤ ‖I − P‖δ(Vh, V )‖uh‖+ ‖ divΓ uh‖Y . (83)

Therefore we have an estimate of the form there is h0 > 0 and C > 0 such that
for all h < h0:

∀uh ∈ Vh ‖uh‖X ≤ C‖ divΓ uh‖Y . (84)

Then, given q ∈ Y , if uh ∈ Vh is the solution of divΓ uh = q we have:

e((0, uh), q)/‖uh‖X = s0(divΓ uh, q) ≥ 1/C‖q‖. (85)
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(ii) Inf-Sup condition on the kernel. Remark that for all (u,λ) ∈ Xh ×Xh

if:
∀q ∈ Yh e((u,λ), q) = 0, (86)

then divΓ λ = 0, hence:

∀q ∈ Y e((u,λ), q) = 0. (87)

In other words the left kernel of e on (Xh × Xh) × Yh is Xh ×Wh which is a
subspace of X ×W . Unfortunately this subspace is not stable under Θ. Let Θh

denote the map:

Θh(uh,λh) #→ (−uVh
h − 1/κ2uWh

h ,λh), (88)

where uh is decomposed as uh = uVh
h + uWh

h with (uVh
h , uWh

h ) ∈ Vh × Wh. By
Lemma 6.1 part (ii), putting δh = δ(Vh, V ) we have an estimate of the form:

‖Θh(uh,λh)−Θ(uh,λh)‖ ≤ Cδh‖(uh,λh)‖. (89)

Using equation (65) it follows that for small enough h we have an estimate of
the form:

Re(d+ k)((uh,λh),Θh(uh,λh)) ≥ 1/C‖(uh,λh)‖2X×X , (90)

from which we can deduce the discrete Inf-Sup condition: There is h0 > 0 and
C > 0 such that for all h < h0:

inf
(uh,λh)∈Xh×Wh

sup
(vh,µh)∈Xh×Wh

|(d+ k)((uh,λh), (vh, µh))|
‖(uh,λh)‖ ‖(vh, µh)‖

≥ 1/C. (91)

By virtue of the general theorems on injective compact pertubations of bi-
linear forms, a similar estimate holds with (d + k) replaced by d when (Xh) is
approximating, which is our claimed result. !

Examples of Galerkin spaces for which the condition δ(Vh, V ) → 0 holds
include the case when we have triangulations Th on Γ upon which we consider
Raviart-Thomas finite elements for Xh and piecewise polynomials of degree one
less and with zero integral on each Γi (this condition can be enforced with one
Lagrange multiplier per connected component of Γ) for Yh. This was proved in
Hiptmair-Schwab [18]. A detailed proof can also be found in Christiansen [13].
Thus for lowest order finite elements we have two degrees of freedom per edge
and one per face of the triangulation.

As is well-known the Inf-Sup condition implies quasi-optimal convergence of
the Galerkin solution (uh,λh) towards the continuous solution (u,λ), i.e:

‖(u,λ)− (uh,λh)‖X×X ≤ C inf
(u′,λ′)∈Xh×Xh

‖(u,λ)− (u′,λ′)‖X×X . (92)
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5 Extension to curved boundaries

In many applications the scatterer is not piecewise flat, but only piecewise
smooth. In this case parametric Finite Elements should be used, and it is
our goal to define them here.

Suppose we have a triangulation Th of Γ. We denote by Γ1
h the affine poly-

hedron it determines. We equip each triangle T ∈ Th with the set Σp
T of points

with barycentric coordinates which are multiples of 1/p. Put Σp
h = ∪T∈ThΣ

p
T .

We suppose we are given a map F p
h : Σp → Γ. We extend F p

h to a function

F
p
h : Γ1

h → R3 by enforcing that on each T ∈ Th its restriction is the P p func-
tion coinciding with F p

h on Σp
T . Then the P p-approximation of Γ is defined as

the range of F
p
h and denoted Γp

h. In the following F
p
h is denoted F p

h .
By way of F p

h standard finite element spaces on Γ1
h can be transported to Γp

h.
The problem is now to define a transport function Gp

h from Γp
h to Γ. When Γ is

globally smooth the orthogonal projection was used in Nédélec [20]. We extend
the technique to piecewise smooth boundaries by a method used in Lenoir [19]
to define parametric volume finite elements in smooth domains.

We suppose Γ can be decomposed as:

Γ = ∪i∈I2γ
2
i ∪i∈I1 γ

1
i ∪i∈I0 γ

0
i . (93)

such that the sets γj
i are pairwise disjoint and such that for each i, j, γj

i is a
smooth j-dimensional manifold.

We suppose the triangulation Th is maid up of triangulations for the patches
γ2
i which coincide along the edges γ1

j and cointain the vertices γ0
k. A more

precise definition would require the theory of simplicial complexes.
We now construct Gp

h for a patch γ2
i . Let T be a triangle of Th. If T contains

at most one point of ∂γ2
i then Gp

h is the orthogonal projection, which is well

defined. If T contains two points on ∂γ2
i , say P0 and P1 belonging to a set γ1

j
we let the third point be P3 and denote λ0,λ1,λ2 the barycentric coordinates in
T . The orthogonal projection onto γ1

j induces a bicontinuous bijection P 1
j from

the edge [P0, P1] to its range in γ1
j . We let Gp

h(P ) be the orthogonal projection

onto γ2
i of the point:

(λ0 + λ1)P
1
j

(

1/(λ0 + λ1)(λ0P0 + λ1P1)
)

+ λ2P2. (94)

The other possibilities (in particular three points on the boundary) we rule
out. On two neighouring triangles the definitions coincide, leading to a globally
defined map Gp

h : Γp
h → Γ. The triangulations are constructed such that this

map is a bicontinuous bijection.
Let Ξp

h be the inverse of Gp
h ◦ F p

h . The Raviart-Thomas vector fields on Γ1
h

are the transported to Γ by Gp
h ◦ F p

h using Piola’s transform:

u #→ JacΞp
hD

−1Ξp
hu ◦ Ξp

h. (95)

Piece-wise polynomials on Γ1
h are transported to Γ according to:

u #→ JacΞp
hu ◦ Ξp

h. (96)

11



The transport formulas were chosen in order to satisfy the property:

divΓ JacΞ
p
hD

−1Ξp
hu ◦ Ξp

h = JacΞp
h divΓ1

h
u ◦ Ξp

h. (97)

With this property the analysis of the preceding sections carry over to the case
of curved boundaries.

6 Appendix

Lemma 6.1 Let X be a Banach space and X = V ⊕W be a splitting of X into
a direct sum of closed subspaces. Suppose (Xh) is a family of closed subspaces
that can be split into direct sums of closed subspaces Xh = Vh ⊕Wh such that
δh = max{δ(Vh, V ), δ(Wh,W )} → 0.

(i) Then there is h0 > 0 and C > 0 such that for all h < h0 and (vh, wh) ∈
Vh ×Wh:

‖vh‖+ ‖wh‖ ≤ C‖vh + wh‖. (98)

(ii) Moreover there is h0 > 0 and C > 0 such that for all h < h0 and
uh ∈ Xh, if (vh, wh) is its decomposition in Vh ×Wh and (v, w) is the one in
V ×W then:

‖v − vh‖+ ‖w − wh‖ ≤ Cδh‖uh‖. (99)

–Proof: (i) Let P denote the projection with range V and kernel W . For any
(vh, wh) ∈ Vh ×Wh, with uh = vh + wh we have:

‖vh‖ ≤ ‖P (vh + wh)‖+ ‖Pwh‖+ ‖Pvh − vh‖ (100)

≤ ‖P‖ ‖uh‖+ ‖P‖δh‖wh‖+ ‖I − P‖δh‖vh‖. (101)

Similarly:

‖wh‖ ≤ ‖I − P‖ ‖uh‖+ ‖I − P‖δh‖vh‖+ ‖P‖δh‖wh‖ (102)

Putting M = max{‖P‖, ‖I − P‖}, adding and rearranging we have:

‖vh‖+ ‖wh‖ ≤ 2M/(1− δh2M)−1‖u‖h. (103)

This proves the first part of the lemma.
(ii) With the above notations we have:

‖Puh − vh‖ ≤ ‖Pvh − vh‖+ ‖Pwh‖ (104)

≤ Mδh‖vh‖+Mδh‖wh‖. (105)

Similarly we have:

‖(I − P )uh − wh‖ ≤ Mδh‖wh‖+Mδh‖vh‖. (106)

Together with the first estimate this gives the second part of the lemma. !
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div

(Γ) et nature de l’opérateur
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[20] J.-C. Nédélec : Curved finite element methods for the solution of singular in-
tegral equations on surfaces in R

3 ; Comput. Methods Appl. Mech. Engrg., Vol.
8, No. 1, p. 61-80, 1976.
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