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Abstract

A method for calculating the Coulomb energy in a periodic system is
discussed for the case that the number N of charges is large,so that it would
be too time consuming to calculate 1/2N*(N-1) pairs.



1. Introduction

In the first part [5] identities for sums were derived which allow a rapid calculation of
the Coulomb energy of an infinite periodic system. This system consists of a basic cell
containing N charges (with charge neutrality) and all their periodic images. These pe-
riodic images can fill the whole space or, as is required in some applications, only a
two-dimensional layer of finite height. The latter case was not treated by Ewald [2], but
in the present treatment it is just a special case.

An important feature of the formulae derived in [5] is the application to dense systems,
i.e. when N gets large, 103 or more. For the Coulomb energy and the Coulomb forces one
has to calculate 1

2 N(N − 1) pairs and therefore the CPU time will increase drastically
with N . It is desirable to have a method for which the number of terms required is not
proportional to N2.

It will be shown that one can proceed in such a way that the CPU time is at most
proportional to N · (logN)2.

The basic idea is simple: one needs a complete product decomposition of the terms
required for the computation of the energy. It turns out that the formulae derived in [4]
and [5] are best suited for this procedure.

2. Product decomposition

In order to illustrate the basic idea we start with a somewhat simplified example. Suppose
we have to calculate an expression of the form

(2.1) S =
N∑

i,j=1

f(xi, xj)

and N may be large. For practical applications this means that we need an approximation
for S with a given accuracy.

Assume now that a product decomposition formula for f is known of the form:

(2.2) f(xi, xj) =
∞∑

!=1

p!(x
i) · q!(xj) .

More precisely, assume that we know that

(2.3)
∣∣∣f(xi, xj)−

L∑

!=1

p!(x
i) q!(x

j)
∣∣∣ ≤ ε for 1 ≤ i, j ≤ N .

If we now replace f in (2.1) by the product approximation and rearrange the sums we
find

(2.4) S ∼=
L∑

!=1

N∑

i=1

p!(x
i)

N∑

j=1

q!(x
j) =

L∑

!=1

P! ·Q! .

1



The important feature of the approximation (2.4) is now that we have to calculate 2L ·N
terms instead of N2 terms.

This procedure can be applied to both the Coulomb energy and the Coulomb forces,
but it is somewhat delicate since the associated formula (2.2) puts a condition on the xi

and xj .

3. Application of the product decomposition method to the
calculation of the Coulomb energy

We first reproduce the formula for the Coulomb energy (Eq. (3.30) in [5]). The basic cell
is assumed to be the unit cube

C :
{
(x, y, z)

∣∣∣ |x| ≤ 1

2
, |y| ≤ 1

2
, |z| ≤ 1

2

}

and the N charges qi ⊂ C have coordinates (xi, yi, zi). We then introduce the following
notations

(3.1)






ρij(#, m) = [(yi − yj + #)2 + (zi − zj +m2]
1
2 , #, m ∈ ZZ

Be[ρ, x] = 4
∞∑

p=1

K0(2πp · ρ) cos(2πpx), ρ > 0

K0 = Bessel function

L[y, z] = log{1− 2 cos(2πy) e−2π |z| + e−4π |z|}
Q0 = −1.942248 . . . .

Then the Coulomb energy contained in C due to the N charges and all their periodic
images is given by

(3.2)

E =
1

2

N∑

i #=j=1

qiqj
{ ∞∑

m,!=−∞
Be[ρij(#, m), xi − xj ]

−
∞∑

n=−∞
L[yi − yj, zi − zj + n]

+
2π

3

( N∑

i=1

qi %xi

)2
+ 2π((zi − zj)

2 − |zi − zj |)
}
+Q0 ·

N∑

i=1

q2i

=: EB + EL +
2π

3
D2 + Ez +Q0 ·

N∑

i=1

q2i ,

with the obvious definitions of the five energy contributions, and %x = (x, y, z).

2



Remarks:

a) If the periodic system is only in x, y-direction and z ranges in a finite height then
the corresponding expression is (see [5], formula (3.31))

(3.3)

E =
1

2

N∑

i #=j=1

qiqj
{ ∞∑

!=−∞
Be[ρij(#, 0), xi − xj ]− L[yi − yj, zi − zj ]

− 2π |zi − zj |
}
+ Q̂0 ·

N∑

i=1

q2i

with Q̂0 = −1.955013 . . . .

b) If the basic cell is not a cube, but still orthorhombic, the expressions are just slightly
changed (see [4]): putting x = a · ξ, y = b · η, z = c · ζ

ρ̃ij(#, m) =
( b

a

)2
(ηi − ηj + #)2 +

( c

a

)2
(ζi − ζj +m)2 ,

L̃[η, ζ ] = log[1− 2 cos(2πη) e−2π |ζ|· c
b + e−4π |ζ|· c

b ]

one now has in the place of (3.2)

(3.4)

E =
1

2a

N∑

i #=j=1

qiqj
{ ∞∑

m,!=−∞
Be[ρ̃ij(#, m), ξi − ξj]

−
∞∑

n=−∞
L̃[ηi − ηj, ζi − ζj + n] + 2π

c

b
((ζi − ζj)

2 − |ζi − ζj|)
}

+Q0(a, b, c) ·
N∑

i=1

q2i

with

(3.5)

Q0(a, b, c) = 2
∞∑

!=1

∞∑

m,n=−∞

′ K0

(
2π"

a

√
(b ·m)2 + (c · n)2

)

−2
∞∑

n=1

log(1− e−2πn c
b ) + γ − log

(
4π

a

b

)
,

where γ ∼= 0.577216 . . . is Euler’s constant and the prime on the summation sign
indicates that the term with (m,n) = (0, 0) is to be omitted. The alterations for
the analog of (3.3) are obvious except for Q̂ which now becomes

(3.6) Q̂(a, b) = 4
∞∑

!,m=1

K0

(
2π# ·m · b

a

)
+ γ − log

(
4π

a

b

)
.

c) If ρij(#, m) → 0, which is possible for −1 ≤ #, m ≤ 1, then the two terms Be[, ] and
L[, ] in (3.2) or (3.3) that become singular have to be combined and yield a regular

3



term. One is led to the following result: Set

(3.7)
G[ρ, x] :=

1√
x2 + ρ2

+
∞∑

!=1

( −1
2
#

)
ρ2!

{
ζ(2#+ 1, 1 + x) + ζ(2#+ 1, 1− x)

}

−ψ(1 + x)− ψ(1− x) ,

where ψ is the Digamma function and

ζ(n, s) =
∞∑

k=0

1

(s+ k)n
, n (= 0,−1,−2

is the Hurwitz Zeta-function (a multiple of the polygamma function). Further,
define

(3.8)

H [y, z] = log(y2 + z2)− L[y, z] + log(4π2)

= 2 · z + 1

3
(y2 − z2) +

1

90
(y4 − 6y2z2 + z4)

+
2

2835
(y6 − 15y4z2 + 15y2z4 − z6) + higher order terms .

If ρij(#, m) becomes small (say < 0.1) then the combination Be[ρij(#, m), xi − xj]−
L[yi − yj, zi − zj +m] in (3.3) may be replaced by

(3.9)
Eij := G[ρij(#, m), xi − xj ] +H [π(yi − yj + #), π(zi − zj +m)]

−5.0620485 .

We now develop the product decomposition for the Coulomb energy as defined by
(3.2). For the term involving the Bessel function this is based on

Lemma 1 (Gegenbauer’s Addition Theorem)

Assume that R > r > 0. Then one has

(3.10) K0

[√
R2 + r2 − 2r R cosϕ

]
= K0(R) I0(r) + 2

∞∑

ν=1

Kν(R) Iν(r) cos(νϕ) .

For the proof of (3.10) and related theorems the interested reader is referred to the classical
book of Watson [6].

For the terms of the form L[yi − yj, zi − zj +m] we can use identities (3.9) and (3.10)
of [5] which lead to the identity given in

Lemma 2 For any η, ζ with η2 + (ζ +m)2 > 0, 0 ≤ ζ ≤ 1 one has

(3.11)
−

∞∑

m=−∞
L[η, ζ +m] = 2

∞∑

!=1

1

#(1− exp(−2π#))
{exp[−2π#(1− |ζ |)

+ exp[−2π# |ζ |]} cos(2π#η) .

4



Lemmas 1 and 2 are the basis for the complete product decomposition of the Coulomb
energy. First we now derive the general expression and then in a separate section the
actual calculation is developed.

Let qi be a charge in the basic cell C and qn another charge which may be in C or any
periodic image of a charge in C. Denote by r and ϕ polar coordinates in the (y, z)-plane
so that the distance between qi and qn is given by

(3.12) ρ(i, n) =
√
r2i + r2n − 2rirn cos(ϕi − ϕn) .

For the moment a convenient assumption is that all charges in the basic cell C are ordered
according to their distance to the center in the (y, z)-plane and one has

(3.13) 0 < r1 < r2 < . . . < rN ≤
√
2

2
.

We will skip the strict inequality signs later on. In this notation the part of the Coulomb
energy in (3.2) involving the Bessel functions may be written as

(3.14) EB =
1

2

N∑

i=1

qi
∑

n>i

qn Be[ρ(i, n), xi − xn] .

We can then apply Lemma 1 and the addition theorem for cosines to find the complete
product decomposition in (3.14). To this end, it is convenient to introduce the following
abbreviations:

(3.15)






cpi = cos(2πp xi)

spi = sin(2πp xi)

cνi = cos(ν · ϕi)

sνi = sin(ν · ϕi)

Kν
pi = Kν(2πp · ri)

Iνpi = Iν(2πp · ri) .

In this notation one gets

(3.16)

Be[ρ(i, n), xi − xn] = 4
∞∑

p=1

(cpi cpn + spi · spn)
{
K0

pn · I0pi +

+ 2
∞∑

ν=1

Kν
pn · Iνpi (cνi · cνn + sνi · sνn)

}
.

For the application of (3.16) a rather careful analysis is necessary and this will be carried
out in Section 4.

5



We also need the product decomposition of the term

Lij := −
∞∑

n=−∞
L[yi − yj , zi − zj + n] .

It is again convenient to introduce the following abbreviations:

(3.17)






e0 = exp(−2π)

ei = exp(−2π zi)

ei = exp(−2π(1− zi))

ĉpi = cos(2πp yi)

ŝpi = sin(2πp yi) .

Then Lemma 2 and the addition theorem for cosines immediately lead to

(3.18) Lij = 2
∞∑

p=1

1

p(1− (e0)p)

{
(ei · ej)p +

(ej
ei

)p}
(ĉpi · ĉpj + ŝpi · ŝpj) .

Of course this is only defined if 0 ≤ zi < zj ≤ 1. Finally the contribution to the energy
stemming from the term

1

2

∑

i #=j

qi qj ((zi − zj)
2 − |zi − zj |) =: Ez

can be rewritten such that 1
2 N(N − 1) pairs (i, j) are avoided:

Using the charge neutrality some algebra shows that one can write

(3.19) Ez = 2π
[ N−1∑

i=1

qi (D
i
z +Qi zi)−D2

z

]

where we have set

(3.20) Dz =
N∑

i=1

qi zi , Di
z =

N∑

j=i+1

qj zj , Qi =
i∑

j=1

qj .

4. Calculation of the Coulomb energy

4.1. Estimates for truncation errors

We first analyze the convergence behaviour of the term Be[ρ(i, n), xi−xn] in (3.14). Since
we are dealing with sums of alternating signs it seems sensible to assume that if all terms
occurring are given with an error less than e−a, where a is a measure for the accuracy
required, then the total sum has the same accuracy.

Now

(4.1) Be[ρ, x] = 4
∞∑

p=1

K0(2πpρ) cos(2πpx) ,

6



and the error if we truncate the series at p = P can be estimated as follows

∣∣∣
∞∑

p=P+1

K0(2πpρ) cos(2πpx)
∣∣∣ ≤

∞∑

p=P+1

K0(2πpρ) <
∫ ∞

P
K0(2πρp) dp .

For the integral we can use the estimates given in [1], p. 481, # 11.1.18 leading to the
bound

(4.2) 4
∞∑

p=P+1

K0(2πpρ) <
5.016

2πρ

1√
2πρ · P

exp(−2πρ · P ) =: Fe[ρ, P ] .

The estimate (4.2) is not applicable for P = 0. For this case one can determine the
values ρ directly for which

(4.3) Be[ρ, 0] ≤ e−a .

This condition determines the cut-off distance Rc: if ρ(i, n) > Rc then all charges qn may
be neglected whose distance to qi is greater than Rc.

In figure 1 we show a plot of 106 ·Be[ρ, 0]. It tells us e.g. that for an error ≤ 10−6 one
has Rc

∼= 2.24.

1

2

3

4

2.52.42.32.22.1
ρ

Be[ρ, 0]

5

Fig. 1

For a given distance ρ on the other hand the number P giving the term Be[ρ, x] with the
required accuracy is defined by the smallest number P = Pa(ρ) ∈ lN such that

(4.4) Fe[ρ, P ] ≤ e−a .

7



As an illustration we show in Figure 2 some typical curves Pa(ρ)

10

Pa(ρ)

ρ

20

30

40

0.05 0.1 0.15 0.250.2 0.3

a = 12
a = 10

a = 14

Fig. 2

The next important information concerns the number of ν-terms needed in the Gegenbauer-
Theorem (3.10). This now requires by (3.16) that

(4.6) 8
∞∑

ν=γ+1

Kν(R) Iν(r) ≤ e−a .

In our applications typically 0 ≤ r < R < 15 so that we may assume that γ > R and
the asymptotic expansions for large ν are valid as given in [1], p. 378, # 9.7.7 and 9.7.8.
reading

(4.7) Iν(ν · z) =
1√
2πν

eνη(z)

(1 + z2)
1
4

{
1 +

∞∑

k=1

uk(t(z))

νk

}

(4.8) Kν(ν · z) =
√

π

2ν

e−νη(z)

(1 + z2)
1
4

{
1 +

∞∑

k=1

(−1)k
uk(t(z))

νk

}
,

where

(4.9) η(z) =
√
1 + z2 + log

( z

1 +
√
1 + z2

)

and

(4.10) t(z) = (1 + z2)−1/2 .

8



The functions uk(t) are given in [1], p. 366, #9.3.9. The first three are

(4.11) u0 = 1, u1(t) =
3t− 5t3

24
, u2(t) =

8(t2 − 462 t4 + 385 t6)

1152
.

We now set ν · z = r in (4.7) and ν · z = R in (4.8). The important term now is the
combination

(4.12) exp
(
ν · η

( r
ν

))
· exp

(
− νη

(R
ν

))
=: Pr(ν, r, R) .

After some rearrangement one finds

(4.13) Pr(ν, r, R) =
( r

R

)ν
exp

[
− ν

(
w
(R
ν

)
− w

(R
ν

))]
,

where w(s) =
√
1 + s2 − log(1 +

√
1 + s2).

For |s| < 1 we can expand w(s) in a power series:

(4.14)
w(s) = 1− log 2 +

s2

4
−

s4

32
+

s6

96
−

5 · s8

1024
+ . . .

= 1− log 2 + w0(s)

with the obvious definition of w0(s). The important point now is that the “large” term
ν(1− log 2) cancels, and we can write

(4.15) Iν(r) ·Kν(R) =
1

2ν

( r

R

)ν
· exp

[
− ν

(
w0

(R
ν

)
− w0

( r
ν

))]
· U1

( r
ν

)
· U2

(R
ν

)
,

where we have abbreviated

(4.16) U1(s) = (1 + s2)−
1
4 ·

{
1 +

∞∑

k=1

uk(t(s))

νk

}

(4.17) U2(s) = (1 + s2)−
1
4 ·

{
1 +

∞∑

k=1

(−1)k
uk(t(s))

νk

}
.

Note that U1(s), U2(s) are close to 1 for s small, i.e. for large ν.

For ν > R > r ≥ 0 one has the simple estimate

(4.18) Iν(r)Kν(R) <
1

2ν

( r

R

)ν
.

We now return to (4.6) and use the bound (4.18) to deduce

(4.19) 8
∞∑

ν=γ+1

Kν(R) Iν(r) < 4
∫ ∞

γ

1

ν

( r

R

)ν
dν = 4 · E1(γ log

(R
r

))
,

9



where E1(s) denotes the exponential integral (see [1], p. 228) for which we may use the
bound ([1], p. 231)

(4.20) E1(s) <
1

s
e−s .

Combining (4.19) and (4.20) we arrive at the truncation condition for γ (setting λ =
log(Rr ))

(4.21)
4

γ · λ
e−γ·λ ≤ e−a .

We can put this into a more convenient form. Set

(4.22) f(s) = s+ log(s)

and let α be the solution of

(4.23) f(s) = a + log 4 .

Then the cut-off condition for the largest values ν = γ to be taken for given accuracy a is

(4.24) γ ≥
α

log(Rr )
.

As a last item we need the cut-off condition for the sum on the right of (3.11). This
requires

(4.25) 2
∞∑

!=L+1

1

#
exp[−2π# · d] ≤ e−a ,

with d = |zj − zi| or d = 1− |zj − zi|. Again we have

(4.26) 2
∞∑

!=L+1

1

#
exp[−2π# · d] < 2

∫ ∞

L

1

#
exp[−2πd · #] d# = 2E1(2πd · L) ,

and therefore the calculation leading to (4.24) can be repeated and one arrives at

(4.27) L ≥
β

2π · d
,

where β is the solution of

(4.28) f(s) = a + log 2 .

10



4.2. Procedure for EB

The main issue of this work is the calculation of the energy contribution EB defined by
(3.14) - (3.16) as

(4.29)
EB = 2

N∑

i=1

qi
∑

rn≥ri

qn
∞∑

p=1

(cpicpn + spispn)
{
K0

pn I
0
pi +

+ 2
∞∑

ν=1

Kν
pn I

ν
pi (c

ν
i c

ν
n + sνi s

ν
n)

}
.

We assume that the accuracy required is given by the condition that the error is to be at
most e−a, a = accuracy parameter. Since a will usually be chosen once for all we omit
the dependence of various quantities on a later on.

The first information we use concerns the “influence region” given by condition (4.3):
only charges qn within the region G ∪ C have to be considered in (4.29) (see Figure 2)

y

z

G

Rc

rn

C qi qjri

Fig. 3

The cut-off distance Rc is given in equation (4.3).

In C we introduce a partition into sectorial domains as follows:

Let (r,ϕ) be polar coordinates in the (y, z)-plane. Set

ϕ! =
2π

L
· #, # = 1, . . . , L ,

11



where L will be chosen depending on the number N of charges in C. Further select a
sequence

0 < r0 < r1 < . . . < rK =

√
2

2
< rK+1 ,

where K will also depend on N . We then define the domains

(4.30) Sk! = {(r,ϕ)| rk−1 < r ≤ rk, ϕ!−1 ≤ ϕ < ϕ!}

and the annular domains

(4.31) Sk = {(r,ϕ) | rk−1 < r ≤ rk}

as well as the disk

(4.32) S0 = {(r,ϕ) | r ≤ r0} .

The calculation of EB consists of two parts: for all charges qi ∈ C, qn ∈ C ∪ G whose
distances ri, rn to the origin differ only slightly we calculate pairwise, and for the other
pairs the product decomposition is applied.

a) Pairwise calculation

We denote the associated energy contribution by EBP which can be calculated as

(4.33) EBP = 2
K∑

k=1

∑

qi∈Sk−1∩C

qn∈Sk−1∪Sk

qiqn Ein .

Here Ein is given by (3.9)

(4.34a) Ein = G[ρ(i, n), xi − xn] +H [(yi − yn) · π, (zi − zn) · π]− 5.0620485

if ρ(i, n) =
√
r2i + r2n − 2ri rn cos(ϕi − ϕn) ≤ δ and

(4.34b) Ein =
1

2
Be[ρ(i, n), xi − xn]

if ρ(i, n) > δ. Here δ ∼= 0.1 may be chosen and the functions G[ ], H [ ] and Be[ ] are
defined in (3.7), (3.8) and (3.1).

b) Product decomposition: Recursions for ν = 0

We now consider any k with 1 ≤ k < K + 1 and assume that qi ∈ Sk−1, qn ∈ G ∪ C −
S1 ∪ S2 ∪ . . . ∪ Sk, i.e. rn > rk.

12



Our aim now is to calculate of (4.29) the sums

2
∑

qi∈Sk−1

qi
∑

rn>rk

qn
P∑

p=1

(cpi cpn + Spi Spn)K
0
pn I

0
pi ,

where the limit P is determined by inequality (4.4) with ρ =
√
r2n + r2i − 2rnri cos(ϕn − ϕi)

there. This can be done in the following way: Let Pk be the smallest number satisfying

(4.35) Fe[rk − rk−1, P ] ≤ e−a ,

with Fe[ ] defined in (4.2). For any 1 ≤ p ≤ Pk let R(p) the solution of

Fe[R, p] = e−a , (R = rk − rk−1) .

Note that roughly one has R(p) = const.
p . For any sectorial domain Sk! we now define a

domain Gp(k, #) containing the charges qn that are sufficiently far from Sk! (see Fig. 3)

Sk−1

Sk

qi

Sk!

R(p)

Gp(k, #)

rk−1

rk

Fig. 4

(4.37) Gp(k, #) = {(r,ϕ) | r > rk ∧ r2 + r2k−1 − 2r rk−1 cos(ϕ− ϕ!) ≤ R2(p)} .

We will also need the intersections

(4.38) Ip(k, #) := Gp(k, #) ∩Gp(k, #+ 1) .

13



We now define a recursion for fixed k and p, with 1 ≤ k ≤ K + 1, 1 ≤ p ≤ Pk.

Start of the recursion: Set

(4.39) A0
p(k, 1) =

∑

qn∈Gp(k,1)

qn cpnK
0
pn .

Recursion step: Set

(4.40) A0
p(k, #+ 1) = A0

p(k, #) +
∑

qn∈I+p (k,!)

qn cpnK
0
pn −

∑

qn∈I−p (k,!)

qn cpnK
0
pn .

Here the regions I+p (k, #), I
−
p (k, #) (see Fig. 5) are defined by

(4.41) I+p (k, #) = Gp(k, #+ 1)\Ip(k, #) ,

(4.42) I−p (k, #) = Gp(k, #)\Ip(k, #) .

R(p)

I−p (k, #)

Sk,!+1

rk

Sk,!

rk+1

I+p (k, #)

Fig. 5

Remark: a) The recursion scheme avoids unnecessary overlaps in the sums arising from
(4.29) and the domains Gp(k, #) ensure that no terms are calculated whose contribution
to the energy would be smaller than e−a.

b) The domains Sk, Sk,!, Gp(k, #), I±p (k, #) have to be determined only once and remain
the same for possibly many calculations.

We also need the associated terms

(4.43) a0p(k, #) =
∑

qi∈S(k−1,!)

qi cpi I
0
pi .

14



The contribution to EB then is

(4.44) E0
B(k, p) = 2

L∑

!=1

a0p(k, #) A
0
p(k, #) .

We can repeat the recursions with terms

(4.45) ã0p(k, #) =
∑

qi∈S(k,!)
qi spi I

0
pi

and analogously

(4.46) Ã0
p(k, #) =

∑

qn∈Gp(k,!)

qn spnK
0
pn ,

leading to the corresponding energy contribution

(4.47) Ẽ0
B(k, p) = 2

L∑

!=1

ã0p(k, #) Ã
0
p(k, #) .

The energy contribution to EB stemming from the product decomposition then finally is

(4.48) E0
B =

K+1∑

k=1

Pk∑

p=1

(E0
B(k, p) + Ẽ0

B(k, p)) .

c) Recursions for 1 ≤ ν

There is one additional difficulty arising in the calculations involving the Bessel functions
Iν , Kν : both numbers may be huge or extremely small if ν is large. Products of the
two terms however will in our case stay moderate. We now can take advantage of the
asymptotic behavior described by formula (4.15).

If ν > R ≥ r > 0 then one has

(4.49)
∣∣∣Iν(r)Kν(R)−

1

2ν

( r

R

)ν ∣∣∣ ≤ e−a

provided

(4.50)
1

2ν

( r

R

)ν (
1− exp

[
− ν

(
w0

(R
ν

)
− w0

( r
ν

))]
· U1

( r
ν

)
U2

(R
ν

))
≤ e−a

with w0( ) defined in (4.14) and U1, U2 in (4.16), (4.17).

If we replace R by 2πprn, r by 2πp · ri then a sufficient condition for the validity of
(4.50) is (see Appendix)

(4.51) H [ν, ri, rn, p] :=
1

2ν2

( ri
rn

)ν [(
1 +

1

ν

)
r2n −

(
1−

1

ν

)
r2i

]
π2p2 ≤ e−a ,

15



where it is assumed that ν > 2π(Rc +
√
2
2 ) ≥ 2πp · rn and rn > ri.

As a simple approximation one may take (see Section 5)

(4.52) ν ≥ ν0(rn, p) = (r2n π
2 p2 ea)1/3 .

As an illustration we give a numerical example:

Choose a = 10, so that e−10 ∼= 0.0000454,

ri = 0.2, rn = 0.22, p = 3.

From (4.52) one finds that for ν ≥ 28 one has

{ 1

2ν

( ri
rn

)2ν
−Kν(2πprn) Iν(2πpri)

}
≤ 0.0000454

while in fact { } ∼= 0.0000444.

The approximation (4.52) yields ν = 46 as the critical value.

The condition (4.51) is useful as long as p is not too large (which is possible if rn − ri
is small).

Setting

Ha[ν, ri, rn, p] =
( 1

2ν

( ri
rn

)ν
−Kν(πprn) · Iν(πpri)

)
ea

a typical plot looks like figure 6:

level line Ha[ν, ri, rn, p] = 1
for ri = 0.58, rn = 0.6, ea = 106

p∗ = 55 128
p

ν∗ = 227ν∗

100

ν

Fig. 6
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Values for error ≤ 10−6:
y = 440: condition (4.24)
Pa(0.02) = 128: condition (4.4)

ν∗ is the smallest integer satisfying

(4.52a)
1

2ν

( ri
rn

)ν
≤ e−a ,

and p∗ is the value for which

(4.52b) Kν(πprk) Iν(πpri) ≤ e−a .

Note that ν∗ and p∗ are substantially smaller than the associated values y and Pa(ρ).

We now can define the recursions involving the Bessel functions of index ν ≥ 1.

We first use the cut-off condition for the ν-values given by (4.24): if rn > ri and

(4.53) ν ≥ νm ≥
α

log( rnri )
,

then these values of ν may be neglected.

We turn this condition around in the following way: any charge qn with distance rn
from the center may be neglected if

(4.54) rn > ri e
α
ν .

Here α is determined by (4.23) and depends only on the accuracy parameter a. The
recursion scheme is thus as follows.

Take a fixed value of k, fixed value of p ≤ Pk and define the disk Ckν as

(4.55) Ckν =
{
(r,ϕ) | r ≤ rk e

α
ν

}
.

Then, set in analogy to (4.39)

(4.56) Aν
p(k, 1) =

∑

qn∈Gp(k,1)∩Ckν

qn cpn c
ν
nK

ν
pn ,

with the same recursion step

(4.57) Aν
p(k, #+ 1) = Aν

p(k, #) +
∑

qn∈I+(k,!)∩Ckν

qn cpn c
ν
n K

ν
pn −

∑

qn∈I−(k,!)∩Ckν

qn cpn c
ν
nK

ν
pn .

The associated terms are

(4.58) aνp(k, #) =
∑

qi∈S(k−1,!)

qi cpi c
ν
i I

ν
pi .
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The recursions run for all values of ν from ν = 1 to ν = νm(k) ≤ α
log(

rk
rk−1

)
.

The value of νm(k) may be rather large and one can therefore use the simplification
suggested by inequality (4.49): for given ν ≤ νm(k) let Rk(ν, p) the solution of

(4.59) H [ν, rk, R, p] = e−a .

Then in the disk

(4.60) Cνkp = {(r,ϕ) | r ≤ Rk(ν, p)}

one can replace in (4.56)
Kν

pn by K̂ν
n := r−2ν

n

and in (4.58)

Iνpi by Îνi :=
1

2ν
· r2νi .

The recursions for ν ≥ 1 have to be repeated for slightly modified terms which we get
from the expressions in (3.16) according to the following list:

(4.61)






Ãν
p(k, #) =

∑

qn∈Gp(k,!)∩Ckνp

qn spn c
ν
n K̂

ν
n

Bν
p (k, #) =

∑

qn∈Gp(k,!)∩Ckνp

qn cpn s
ν
n K̂

ν
n

B̃ν
p (k, #) =

∑

qn∈Gp(k,!)∩Ckνp

qn spn s
ν
n K̂

ν
n .

The associated terms are then

(4.62)






ãνp(k, #) =
∑

qi∈Sp(k−1,!)

qi spi c
ν
i Î

ν
i

bνp(k, #) =
∑

qi∈Sp(k−1,!)

qi cpi s
ν
i Î

ν
i

b̃νp(k, #) =
∑

qi∈Sp(k−1,!)

qi spi s
ν
i Î

ν
i .

The energy contributions are then as in (4.44):

(4.63) Eν
B(k, p) = 4

L∑

!=1

{aνp(k, #)Aν
p(k, #) + . . .+ b̃νp(k, #) · B̃ν

p (k, #)} .
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The total contribution finally is

(4.64) EB = E0
B +

K∑

k=1

Pk∑

p=1

νm(k)∑

ν=1

Eν
B(k, p) .

4.3. Procedure for EL

It is convenient for the subsequent analysis to introduce two more sets (see Fig. 6)

(4.65)
Y =

{
(y, z)

∣∣∣ |y| ≤ 1

2
, |z| > 1

2

}

Rδ = {(y, z)
∣∣∣ (y, z) ∈ lR2 − C, dist{(y, z), C} ≤ δ} .

C

Y

Y

Rδ

Fig. 7

According to (3.2) the energy contribution denoted as EL may be written as

(4.66) EL = −1

2

∑

qi∈C

∑

qj∈C∪Y
qiqj L[yi − yj, zi − zj ] .

We now have to take into account that some terms of EL have already been included in
EB: the terms that were needed in (4.33). These are all the pairs qi, qj where qi ∈ C,
qj ∈ G ∪ C with ρ(i, j) ≤ δ. This implies that all pairs with qi ∈ C, qj ∈ Rδ, ρ(i, j) ≤ δ
have been included also, hence we have a correction term

(4.67)
Eδ =

1

2

∑

qi∈C

∑

qj∈Rδ

qiqj L[yi − yj, zi − zj ] .

ρ(i,j)≤δ
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It remains therefore to calculate the remaining terms of EL in (4.66), that is

(4.68)
ÊL = −1

2

∑

qi∈C

∑

qj∈C∪Y
L[yi − yj, zi − zj ] .

ρ(i,j)>δ

The calculation of ÊL, i.e. the approximation with given accuracy, is split up into two
parts: for all pairs (qi, qj) ∈ C such that

ε < |zi − zj | < 1− ε

we will apply the product decomposition as given in (3.18). For all pairs in C with
|zi − zj | ≤ ε or |zi − zj | ≥ 1− ε the energy contributions will be calculated pairwise. The
choice of ε will be discussed later on.

a) Product decomposition of EL(ρ(i, j) > δ)

We split up the basic cell C into M stripes

(4.69)






Zm =
{
(y, z)

∣∣∣ |y| ≤ 1

2
,
m− 1

M
≤ z <

m

M

}
, m = 1, . . . ,M − 1

and

ZM =
{
(y, z)

∣∣∣ |y| ≤ 1

2
,
M − 1

M
≤ z ≤ 1

}
.

We now make use of (3.18) and consider first the terms denoted ei(= exp(−2π · zi)).
Choose qi ∈ Zm and qj ∈ Zm+!, # ≥ 2. Then the associated energy contribution can be
written as

(4.70)
M−2∑

m=1

M−m∑

!=2

P (!)∑

p=1

αp

∑

qi∈Zm

qi ĉpi e
−p
i

∑

qi∈Zm+$

qi ĉpj e
p
j = E

(1)
L .

Here αp = 1
p(1−exp(−2πp)) and the number P (#) is determined by the accuracy; this was

derived in (4.26) - (4.28):

(4.71) P (#) ≥
β ·M

2π(#− 1)

where β is the solution of

(4.72) f(β) := β + log β = a+ log 2 ,

where a = accuracy parameter.
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We can rewrite (4.70) in different form: Set

(4.73)






Dp
m =

∑

qi∈Zm

qi ĉpi e
−p
i

dpm! =
∑

qj∈Zm+$

qj ĉpj e
p
j .

Then we have

(4.75) E
(1)
L =

M−2∑

m=1

M−m∑

!=2

P (!)∑

p=1

αp D
p
m dpm! .

There is then a similar expression involving the sinus terms ŝpi:

(4.75) E
(2)
L =

M−2∑

m=1

M−m∑

!=2

P (!)∑

p=1

αp D̃
p
m d̃pm! ,

with

(4.76)






D̃p
m =

∑

qi∈Zm

qi ŝpi e
−p
i

d̃pm! =
∑

qj∈Zm+$

qj ŝpj e
p
j .

In the expressions E
(1)
L , E

(2)
L the charges are chosen in different stripes such that

|zi − zj| ≥ ε = 1
M . Next we choose the positions such that 1 − |zi − zj | ≥ ε in order

to apply the product decomposition formula involving the terms ei. We define now P (#)
as the smallest integer such that

(4.77) P (#) ≥
β ·M

2π(M − #− 1)

and introduce in analogy to (4.73), (4.76) the quantities

(4.78)






F p
m =

∑

qi∈Zm

qi ĉpi(ei)
p, F̃ p

m =
∑

qi∈Zm

qi ŝpi(ei)
p

f p
m! =

∑

qj∈Zm+$

qj ĉpj(ej)
p, f̃ p

m! =
∑

qj∈Zm+$

qj ŝpj e
p
j .

With these quantities two more energy contributions are formed, namely

(4.79) E
(3)
L =

M∑

m=2

M−m∑

!=0

P (!)∑

p=1

αp F
p
m · f p

m! ,

and

(4.80) E
(4)
L =

M∑

m=2

M−m∑

!=0

P (!)∑

p=1

αp F̃
p
m · f̃ p

m! .

The total energy contribution stemming from the product decomposition of EL from
charges qi, qj in C with ρ(i, j) > δ is thus E(1)

L + E
(2)
L + E

(3)
L + E

(4)
L .
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b) Pairwise calculation

The remaining pairs that have not been calculated so far are pairs qi, qj with ρ(i, j) > δ
but |zi − zj | ≤ ε or 1− |zi − zj | ≤ ε = 1

M . Thus the last contribution to EL is

(4.81) Eδ
L = −1

2

∑

qi,qj∈C∩Zδ,ε

qiqj
S∑

s=−S

L[yi − yi, zi − zj + s]

where

(4.82) Zδ,ε = {pairs (qi, qj) | ρ(i, j) > δ, |zi − zj| ≤ ε ∨ 1− |zi − zj| ≤ ε} .

The number S in (4.81) depends again on the accuracy. For most practical purposes
S = 2 or 3 will suffice.

4.4. Modifications for the two-dimensional case

There is very little that has to be changed if the basic system is only periodic in x and y
direction and z ranges in a finite height (see Remark a) following Eq. (3.2)). In this case
the charges qn are located in the rectangle

(4.83) G =
{
(y, z)

∣∣∣ |y| ≤ 1

2
+Rc, 0 ≤ z ≤ 1

}

where the cut-off distance Rc is still given by (4.3).

All formulae for the calculation of EB remain valid under the restriction that qn ∈ G,
G now being defined by (4.83).

For the calculation of EL we need the counterpart of the product decomposition for-
mula (3.18). We can now make use of another identity given in [5] (#(3.16) there):

(4.84) −L[yj − yi, zj − zi] = 2
∞∑

p=1

1

p
exp[−2πp|zj − zi|] cos[2πp(yi − yj)] .

One readily checks that the counterpart of (3.18) now reads (in the notation introduced
in (3.17))

(4.85) −L[yj − yi, zj − zi] = 2
∞∑

p=1

1

p

(ej
ei

)p
(cpi · cpj + spi · spj) .

One now has only the corresponding energy contributions E
(1)
L and E

(2)
L as defined in

(4.74)-(4.76), with now αp =
1
p .

In the pairwise calculation the analog of formula (4.81) now is

(4.86) Eδ
L = −1

2

∑

qi,qj∈C
ρ(i,j)>δ

qi qj L[yi − yj, zi − zj ] .
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Finally, the correction term Eδ given in (4.67) is the same except that the set Rδ there
has to be replaced by

(4.87) Rδ =
{
(y, z)

∣∣∣
1

2
< |y| ≤ 1

2
+ δ

}
.

5. Estimate for the number of terms

The main issue of this section is to derive a bound for number of terms involved as function
of the number N of the charges located in the basic cell C, with N being rather large.
We will use a number of simplifications in the following which should have only a minor
effect on the final result.

It is clear that only numerical tests will give a precise answer, but such tests depend
very much on the way this method is programmed. Nevertheless one can get a good idea
about how the number of terms to be calculated will increase as N increases.

We concentrate fully on N keeping the accuracy a fixed in a range which seems of
practical importance, say 6 ≤ a ≤ 15.

a) Pairwise calculation

We assume that in (4.31) r0 = rk − rk−1 = ε for all k and estimate first the number of
terms occurring in (4.33). Formula (4.33) has the following geometrical interpretation
(see Figure 6):

qi
qn

Aε(r)C

ε

r

Fig. 8

For fixed r one has to calculate the interaction of all charge pairs qi, qn in the annulus
Aε(r). Since there are N charges in C (volume of C = 1) the number of pairs contained
in Aε(r) can be approximated by 1

2 (2πε · r)2, ε = small number.
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The number T1(ε, N) of terms necessary for EBP can thus be estimated as follows

(5.1) T1(ε, N) ∼= n1(a) · 2π2 · ε2N2
∫ √

2
2

0
r3 dr = c1(a) · ε2 ·N2

where n1(a) is a number which depends only on the accuracy a. The correction term
given in (4.67) can be incorporated in (5.1) as well.

b) Product decomposition for EB

We first rewrite the basic product decomposition formula (4.29) in the way it is applied
in our procedure:

(5.2)

EB
∼= 2

N∑

i=1

qi ·
∑

rn>ri+ε

qn ·
P (i,n)∑

p=1

{
T

(1)
pi · T (2)

pn +
ν0(p,i,n)∑

ν=1

T
(3)
pνi T

(4)
pνn

+
νm(i,n)∑

ν=ν0+1

T̂
(3)
νi T̂ (4)

νn

}
.

Here the T (i)-terms stand for the types of terms contained in (4.29).

In the following we shall approximate the sums by integrals and the summation limits
P (i, n), ν0(p, i, n) by continuous functions. Let r be the distance to the origin in the
(y, z)-plane of a charge qi and ρ the same for qn.

Then the number of terms involved in (5.2) can be approximated as

(5.3)
T2(ε, N) ∼= N

∫ √

2
2

ε
r dr

{
n2

∫ r+Rc

r+ε
P (r, ρ)dp+ n3

∫ P (r,ρ)

p=1
ν0(p, r, ρ)dp

+ n4

∫ Rc

r+ε
[νm(r, ρ)− ν0(1, r, ρ)]dp

}
.

Here n2, n3, n4 count the number of trigonometric and Bessel functions involved.

We now need an upper bound for P (r, ρ) and this is determined in (4.4) with ρ replaced
by ρ− r there. One finds (see Appendix)

(5.4) P (r, ρ) <
1

2π(ρ− r)

{
a + log

( 1

ρ− r

)}
.

Therefore one has

(5.5)
n2

∫ √

2
2

ε
r =

∫ r+Rc

r+ε
P (r, ρ)dρ dr <

n2

2π

∫ √

2
2

ε
r dr

∫ Rc

ε

[
a

t
+

1

t
log

(
1

t

)]
dt

< c2(a)
[
log

(
1

ε

)
+ log2

(
1

ε

)]
.
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Next we need an estimate for the expression

(5.6) a0 ≡
∫ √

2
2

ε

∫ r+Rc

r+ε

∫ P (r,ρ)

p=1
ν0(p, r, ρ)dp dρ dr .

We use the crude upper bound (see Appendix)

(5.7) ν0(p, r, ρ) < [ea(πpρ)2]1/3

which implies

(5.8)

∫ P (r,ρ)

p=1
ν0(p, r, ρ)dp <

3

5
ea/3 (πρ)2/3 · P (r, ρ)5/3

=
3

5
ea/3 · (πP (r, ρ) · ρ)2/3 · P (r, ρ) <

3

5
ea/3

(
π
(√

2

2
+Rc

))2/3
· P (r, ρ) .

The combination of (5.8) and (5.5) shows that

(5.9) a0 < c3(a)
[
log

(
1

ε

)
+ log2

(
1

ε

)]
.

As a last step we bound the term

(5.10) a1 ≡
∫ √

2
2

ε

∫ r+Rc

r+ε
(νm(r, ρ)− ν0(1, r, ρ))dρ dr <

∫ √

2
2

ε

∫ r+Rc

r+ε
νm(r, ρ)dρ dr .

By (4.24) one has

(5.11) νm(r, ρ) ≤
α

log(ρr )
+ 1 ,

where α is the solution of (4.23).

We estimate as follows:
∫ r+Rc

r+ε

dρ

log(ρr )
=

∫ Rc

ε

dρ

log(1 + t
r )

<
∫ Rc

ε

r + t

t
dt = r log

(Rc

ε

)
+Rc − ε

so that one has the crude estimate (for small ε!)

(5.12) a1 < const · log
(
1

ε

)
.

Combining (5.1), (5.3), (5.5), (5.9) and (5.12) we see that the total number of terms
needed for the calculation of EB can be estimated in the form

(5.13) T (ε, N) < c1 · ε2 ·N2 +N
(
c2 log

(
1

ε

)
+ c3 · log2

(
1

ε

))
.

Here ε is the width of the annulus shown in Figure 6.
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c) Product decomposition of EL

The procedure explained in (4.69) and the sequel can be summarized as follows (see
Fig. 9)

s

qj
Zm!

Zm

qi

ε

ε

Fig. 9

For any charge pair qi in the ε-strip Zm, qj in Zm! one has to calculate the sums denoted
by Dp

m, d
p
m!, D̃

p
m, d̃

p
m!, F

p
m, f

p
m!, F̃

p
m, f̃

p
m! in (4.78). The summation over p runs from 1 to

a value P for which one has the estimate (see (4.27))

(5.14) P ≤
β

2π · S
,

where β is the solution of (4.28).

Hence the number of terms needed for the calculation of EL allows the estimate

(5.15) T (5)(ε, N) < c5

∫ 1−ε

ε

β

2π · s
ds < c5 ·

β

2π
log

(
1

ε

)
·N .

Hence for the total number of terms needed for the calculation of the Coulomb energy
the estimate (5.13) holds with the meaning of ε described in Figures 6 and 7.

We can now make an optimal choice of ε which will depend on the constants c1, c2
and c3 in (5.13). They have not been determined yet since this should be based on the
CPU time required. If we choose ε = c ·N−1/2 we see that

(5.16) T (ε, N) < N(C1 + C2 · logN + C3(logN)2) .

If one optimizes the value of ε in (5.13) there is no significant improvement of the estimate
(5.16).
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Appendix

A.1 Estimate for the solution of (4.4)

We first derive an upper bound for the solution of

(A1)
5.016

2πρ

1√
2πρ · P

exp(−2πρP ) = e−a .

Setting c = 5.016
2π and 2πρP = s we rewrite the equation in the form

(A2) s+
1

2
log s = a+ log

( c

ρ

)
.

Since a >> 1 in applications we certainly have

(A3) s < a+ log
( c

ρ

)
,

i.e.

(A4) P <
1

2πρ

(
a+ log

(
c

ρ

))
.

One can give a very sharp estimate in the following way. We set s0 = a + log( cρ) and
s = s0(1− t). Then insertion into (A2) and reduction yields

(A5) s0 · t +
1

2
log(1− t) =

1

2
log s0 .

Since t is close to zero we may expand the logarithm. First order approximation then
gives

(A6) t =
1

2

log s0
s0 +

1
2

,

which leads to the estimate

(A7) P ∼=
1

2πρ
s0

[
1−

1
2 log s0
s0 +

1
2

]
, s0 = a + log

(5.016
2πρ

)
.

Numerical tests show that this approximation is surprisingly sharp. There is however no
significant improvement of the estimate given in (5.5) resulting from this sharper estimate
for P .

A.2. Derivation of condition (4.51)

A series expansion of the term

(A8) h[r, R, ν] = 1− exp
[
− ν

(
w0

(R
ν

)
− w0

( r

ν

))]
U1

( r

ν

)
U2

(R
ν

)
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in powers of 1
ν yields

(A9)
h[r, R, ν] =

1

4ν

(
R2 − r2 +

1

ν
(R2 + r2)− 1

32
(R2 − r2)

1

ν
+O

(
1

ν2

))

<
1

4ν
(R2 − r2) +

1

ν
(R2 + r2) +O

(
1

ν2

))
.

Hence one has

(A10)
∣∣∣Iν(r)Kν(R)− 1

2ν

( r

R

)ν ∣∣∣ <
1

8ν2

( r

R

)ν {
R2 − r2 +

1

ν
(R2 + r2) +O

(
1

ν2

)}

which in turn leads to condition (4.51).

In order to find a crude approximation ν0 for the value of ν for which

(A11)
∣∣∣Iν(r)Kν(R)− 1

2ν

( r

R

)ν ∣∣∣ ≤ e−a

we choose r = R = 2πprn and use (A10). This leads to the estimate

(A12) ν ∼= ν0 = (rn πp)
2/3 · ea/3 ,

as used in (4.52).
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